
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CpE 191/EEE 193B Senior Design 
Project DispenSUM 

 

Ben Green, Dana Natov, Nael Numair, Jennifer Ong, Nick Rarick 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
  



1 

 

College of Engineering and Computer Science - California State University, Sacramento 

 

Table of Contents 
 
Executive Summary 

I. Introduction 

II. Societal Problem 

III. Design Idea Contract 

IV. Funding Breakdown 

V. Project Milestones 

VI. Work Breakdown Structure  

VII. Risk Assessment  

VIII. Design Overview 

IX. Prototype Status 

X. Marketability Forecast  

XI. Conclusion 

XII. References 

XIII. Glossary  

  



2 

 

College of Engineering and Computer Science - California State University, Sacramento 

 

List of Figures 

1. Figure 1  Reasons for non-compliance 

2. Figure 2  Concept Art of Final Product 

3. Figure 3  Risk Matrix 

4. Figure 4  Deployable Prototype 

 

 

  



3 

 

College of Engineering and Computer Science - California State University, Sacramento 

 

List of Tables 

1. Table 1 List of Suppliers 
2. Table 2 Jennifer’s Task Hours 

3. Table 3 Nael’s Task Hours 

4. Table 4 Ben’s Task Hours 

5. Table 5 Nick’s Task Hours 

6. Table 6 Dana’s Task Hours 

 

  



4 

 

College of Engineering and Computer Science - California State University, Sacramento 

 
EXECUTIVE SUMMARY

Almost everyone must take medication in their lifetime. Poor medication adherence, or not 

adhering to medication treatment plans, takes the lives of 125,000 Americans annually and costs nearly 

$300 billion a year in additional use of the medical system. The problem affects all demographics but 

people 85 year and older take an average of 13 different medications and those 65 years and older are the 

most adversely affected by poor medication adherence. Solutions to the problem are numerous. The 

DispenSUM smart medication dispensing device is an easy to use, safe, and a potentially effective 

solution that will be unique in the medical devices market. 

            The DispensSUM platform provides a new method of medication adherence by reducing the 

patient’s required effort to organize, store, refill, and remember when as well as how much of each 

medication they must take. The uniqueness of the machine is primarily due to the implementation of 

cheap to manufacture and reusable medication cartridge. The cartridge arrives at the patient’s door pre-

loaded with their required medication and a dosing schedule stored in onboard memory. The patient 

simply taps the cartridge to the side of the machine, which loads the dosing schedule into the machine, 

and is instructed to place the cartridge into an available slot. The DispenSUM platform then dispenses the 

patient’s medication on the pre-loaded schedule, helping the patient adhere to their medication therapy 

while removing the burden of organizing and remembering when to take their pills. This truly unique 

aspect also gives rise to a new method of medication delivery, presenting a business opportunity in the 

form of the cartridge delivery services. The DispenSUM system has also been designed with caretakers in 

mind.  

The DispenSUM machine is part of the new generation of, “the internet of things”. By 

implementing internet connectivity, the platform provides caretakers and loved ones with the tools to help 

keep track of the patient using the machine. It tracks medication adherence and updates anyone that is 

programmed into the database. It can also warn caretakers and doctors if a dose is missed and order refills 

from the pharmacy when a cartridge is running low. This communication allows for the patient to retain 

their independence while helping caretakers and doctors feel confident that medication is being taken on 

time and in the right dose. 

The DispenSUM platform has been designed with safety in mind. It includes several system 

redundancies, data logging, internet connectivity, and user feedback to ensure safe operation by the user 

and reduce downtime. By following FDA guidelines concerning electronic medication control devices 

more closely than any competitor on the market, the DispenSUM platform may be more capable of 

quickly going through regulatory “red tape” on its way to the market. It may also allow more insurance 

plans to cover the medical device, helping the platform reach a much larger market. 

            Though there are existing medication assistive devices on the market, The DispenSUM platform 

provides an innovative way to reduce the burden of taking medication while increasing medication 

adherence. The programmable and reusable cartridge reduces the user interaction to a level equivalent to 

receiving a DVD in the mail and watching it at home. The use of these cartridges also presents the 

opportunity to develop a subscriber based service to potentially change how medication arrives in the 

homes of the user. The platform adheres to FDA guidelines more than the existing competition and is 

designed with safety in mind, allowing it to potentially reach a larger user base more quickly. Ultimately, 

the goal of the DispenSUM platform is to help increase medication adherence while delivering 

independence and freedom to the end user.



5 

 

College of Engineering and Computer Science - California State University, Sacramento 

DispenSUM - Deployable Prototype 

Documentation  
A Solution to Medication Non-Adherence 

Ben Green, Dana Natov, Nael Numair, Jennifer Ong, Nick Rarick 

College of Engineering and Computer Science - California State University, Sacramento

Abstract —  Our device, a medication adherence 

aid, is designed to properly dispense accurate 

medication on a unique timed schedule tailored to 

the owner of the device. Named DispenSUM, this 

device will help tackle our societal problem of 

medication non-adherence by keeping an 

individuals medication adherence in check. Our 

device, now functioning as a deployable prototype, 

has many different elements of organizational, 

analytical, logistical, mechanical, electrical and 

programming aspects. This document describes 

all the aspects regarding the design process and 

demonstrates our results. 

Keyword Index— DispenSUM, Electronic Pill-box, 

Software Testing, Electronic Testing, Mechanical Testing 
 

I. INTRODUCTION 

The use of medication is very common, 

as almost everyone at one point has or will take 

some type of medication. Doctors and 

pharmacists prescribe patients with medication 

but some do not take their medication as 

prescribed because they are taking their 

medication incorrectly or are they are not taking 

it at all. Over the years, this has become an 

increasing concern to health organizations, the 

government and even pharmaceutical companies  

due the multitude negative consequences that 

arise from medication non-adherence. The term 

“medication adherence” is commonly used when 

discussing medication use as it describes the 

extent to which a patient follows medical 

instructions [1]. Throughout this report 

medication non-adherence and medication non-

compliance are used interchangeably.  

After taking a closer look at the impact 

of medication non-adherence, our team decided 

to develop an effective engineering solution to 

address this problem. We designed a automated 

pill dispensing device.  DispenSUM is the name 

of the design and it is an electronic pill organizer 

that manages and dispenses medication. With 

DispenSUM, users will never forget to take their 

medications again or double dose as it provides 

timed, accurate, and consistent medication. It is 

designed specifically for those who need help 

managing their medication such as the elderly 

who are prone to forgetting, people who have to 

take multiple medications, and those taking 

medication without professional supervision. 

The goal of DispenSUM is to provide a solution 

which will improve quality of life, reduce health 

care costs, and help retain people’s 

independence as it can used in the comfort of 

one’s home.  

One of the key philosophies behind our 

design was the idea of Safety, Usability and 

Medication Adherence (SUM). We use the SUM 

philosophy to help guide every single design 

decision. This not only gave us a defining 

principle that helped guide us through this 

process, but it helped us identify clear goals in 

which the whole team could work together on.  

Throughout our design process one of 

our main priorities was to develop a design that 

differs from the other pill-boxes currently on the 

market. In order to do so, we  modified some of 

the features that already exist on other pill boxes 

while adding several new features. The team 

considered several different implementations for 

each feature in order to come up with a design 

that would improve safety, user friendliness, and 

medication adherence. The team developed the 

unique idea of the smart pill cartridge based 

design. The idea is to collect the dosage and pill 

information from the doctor or pharmacy and 



6 

 

College of Engineering and Computer Science - California State University, Sacramento 

load that information on a pill cartridge. User’s 

of DispenSUM simply need to load the cartridge 

into the system. They are automatically 

reminded when their pills need to be taken. 

 

This project ran over two semesters. At 

the end of the first semester we had created a 

working laboratory prototype. We followed a 

clear design process which included creating a 

design idea, work breakdown structure, project 

timeline, and risk assessment. In the second 

semester the team worked on improving and 

implementing additional features to the device in 

order to take our device from a laboratory 

prototype to a deployable prototype. The 

following report documents and describes the 

work that was required to develop the team’s 

design idea, assemble a laboratory prototype, 

perform appropriate testing and market research 

in order to create a deployable prototype. 

II. SOCIETAL PROBLEM 

Medication adherence has been 

identified as a societal problem due to the 

overwhelming statistics that highlights the extent 

and impact it has on society. Approximately 

50% of patients do not take their medication as 

prescribed and this results in increased 

morbidity and mortality rates, as well as 

healthcare spending [2]. Research shows that 

poor medication adherence takes the lives of 

125,000 Americans annually, and costs the 

health system nearly $300 billion a years in 

additional doctor visits, emergency department 

visits and hospitalizations [3].  

Medication non-adherence is most 

prevalent among the elderly and people 

suffering from a chronic disease. This is due to 

the fact that elderly people are more prone to 

forgetting to take their medication which is the 

number one reasons for medication non-

compliance. As for people with a chronic 

disease many have to take medication 

consistently which can become fairly costly so 

they stop taking it. Statistics for non-compliance 

due to certain reasons mentioned previously is 

shown below in Figure 1 among with several 

other reasons for non-compliance.  

 

Fig. 1 Reasons for non-compliance 

 

Research has shown that the rate of 

medication non-adherence is most likely to 

continue to increase due to the growing rate of 

population ageing and increase in life 

expectancy. The reason why an increase in 

population ageing and life expectancy affects 

rates of medication adherence is because 

medication non-adherence mainly affects the 65 

years or older age group. Not only does 

medication non-adherence effect patients but 

also others, for example it can cause financial 

and  emotional stress on patient’s family and 

caregivers. Therefore, it is imperative that this 

issue be addressed to mitigate the impact it has 

on society.  

III. DESIGN IDEA CONTRACT 

This device is a medication management 

system intended for use by the elderly at home. 

The device will be able to accurately and timely 

dispense medication tailored to the patient's 

medication needs. Our whole device centers on a 

smart pill cartridge based design, simplifying the 

reloading process and medication identification. 

The cartridges will hold all the necessary 

information on patient dosages and medication 

amounts. Also the cartridge will be designed so 

that medication can be pre-filled. This ultimately 

reduces user effort and helps promote adherence. 

Now, all the user has to do is insert the cartridge 

and press a single button to get medication. A 

quick conceptual sketch of our desired final 

product is shown in Figure 2. 

 



7 

 

College of Engineering and Computer Science - California State University, Sacramento 

 
Fig. 2 Concept Art of Final Product 

 

Some guidelines and features were 

highlighted and suggested by the FDA, 

specifically the Center for Devices and 

Radiological Health [4]. We also reviewed the 

Code of Federal Regulations to help us identify 

our device as Class II (special controls) [5]. 

Using these guidelines help us achieve a higher 

level of compliance with regulations in an 

attempt to prepare for when we want to bring 

our device to market. Using what we learned in 

the Problem Statement, our SUM ideal and 

Federal Regulations, we came up with a feature 

list we see as adequate in scope. 

A. Features List 

Swappable Cartridge(s) - The swappable 

cartridge design helps us provide a versatile, yet 

easy to use, device. This makes it possible to 

change or renew your medication schedule in the 

product by simply placing it in the base system. 

The cartridge will come pre-programmed with a 

medication schedule. The cartridges will 

communicate with the base wirelessly with built 

in radio frequency identification tags (RFID) 

which will program the base with the correct 

medication schedule for the cartridge 

medication. This will prevent misuse, accidental 

overdosing and promote proper adherence. It 

also allows for a diverse selection of pill or 

capsule medication. This is the cornerstone piece 

of our prototype. 

Rotary Base Module - The rotary base is 

simply a cylindrical base used to rotate the 

cartridges over a dispense cup. This module 

provides versatility, allows us to use multiple 

cartridges in one system and helps us comply 

with several FDA regulations. A drawing of the 

rotary base module can be found in Appendix D 

Part III. 

Two Button Design - The two button design is 

simply a two  button panel for the user to 

interact with the device. This design was heavily 

influenced by our SUM principal. It is used to 

simplify the experience of the user. One button 

will be to dispense medication and the other 

button allows the user call for help if needed. 

Raspberry Pi (RPi) Touchscreen - Similar to 

our three button design, the RPi touchscreen is 

another feature implemented for the user to 

interact with the device. The “touch” 

functionality of the screen is simply to provide 

more capability to the end user if needed and 

give caretakers or technicians the ability to 

configure the device. The large screen will allow 

us to give the patient feedback on what 

medication they are about to take. 

Light and Sound Notifications - The light and 

sound notifications alerts users that their 

medication is ready to dispense. The notification 

will turn off when the dispense button is pushed 

otherwise it will continue for a specified number 

of minutes until turning off. If the dispense 

button is not pushed within the specified time 

then an email notification will be sent to the 

users caretaker email. 

Redundant Systems - In order to comply with 

FDA regulations we decided to introduce many 

sensors that allow for us to very accurately 

identify when a pill has or has not been 

dispensed. A load cell will be used to accurately 

count the amount of pills in the dispense cup. In 

addition, we are also integrating a close-

proximity infrared sensor that detect if a pill has 

been dispensed through the pill shoot. Many 

software redundancies will also be utilized to 

ensure accurate dispense amounts. These 

systems are critically important for the function 

of our device. This is also heavily influenced by 



8 

 

College of Engineering and Computer Science - California State University, Sacramento 

our SUM philosophy and our compliance with 

FDA guidelines. 

Interaction Unit GUI Program - The 

Interaction Unit features the three button panel 

and RPi touch screen. This unit will be 

integrated on the front end of the physical 

device. A GUI program will be created for the 

RPi touch screen so users can easily interact 

with the device. The GUI program will display 

what medication the user is taking, the current 

remaining pill count, and all possible warnings 

you will see on a standard pill bottle. 

 

Pharmacist GUI Program - For the cartridge 

system the overall idea is that the pill cartridges 

will be programmable by implementing RFID 

technology. To keep things simple a graphical 

user interface (GUI) program will be created for 

a medical professional (e.g. pharmacist) to enter 

in the medication information. The program will 

provide the user with a form for them to fill-in, 

which then is converted into a text file and 

transferred to the interaction unit (raspberry pi). 

This form would have fields for the following, 

medication name, emergency contact, 

medication quantity and dose, medication times, 

and any other medication notes. 

 

Email Notifications - A notification will be sent 

to the emergency contact via email when 

medication is not taken within a certain 

timeframe. The Raspberry Pi will be used to 

implement this feature by connecting the 

Raspberry Pi to Wi-Fi. Then a python script will 

be created which will monitor the sensor that 

detects whether the medication has been taken 

from the pill-dispensing box. The python script 

will have code that enables an email notification 

to be sent using the programmed emergency 

contact information if the medication has not 

been taken. Also, an email notification will be 

sent when medication is running low so 

medication refill can be arranged. 

RFID System - The RFID system is used as the 

medium memory between the pharmacist GUI 

and the Interaction GUI. This consists of a two 

part system. The first part consists of writing to 

the tag. This process takes the information from 

the pharmacist GUI using Mifare read-writer 

which is connected to an Arduino uno and sends 

the information over. The second half to this 

system is associated with the Raspberry Pi 3. 

Using a python equivalent version of the code, 

the information is then transferred from the 

RFID tag into the Pi in the form of a text file. 

From there a python script takes the information 

and converts it from decimal to ASCII.         

 

IV. FUNDING BREAKDOWN 

Project DispenSUM was a non-

sponsored project. Each group member has 

contributed money to buy the necessary items in 

order to complete the project.  The SUM design 

philosophy does not specify or require the need 

for the system to be low cost. However, it has 

been a goal to make the project as affordable as 

possible. Total cost to date is $1375.22 which 

includes everything that we have bought since 

day one of this project. Total does not include 

items we had already owned. The total cost of 

the project does not reflect that actual cost to 

make because not all items bought were used in 

this final iteration of the project. 

 

Supplier Cost 

Ace Hardware $26.00 

Amazon $808.92 

Fry’s Electronics $50.14 

Home Depot $18.08 

McMaster-Carr $313.10 

Others $158.98 

Table 1 - List of Suppliers  

 

The table above shows a list of suppliers 

that we went to for parts. Others consist of IEEE 

student branch at Sacramento state, Rockler 

Woodworking and Hardware, DFRobot.com, 

Blick Art Supply, Smoothon.com, WireCare and 

FRC Team 1678 these groups listed in other 

were contacted for either one time purchase or 

use.       



9 

 

College of Engineering and Computer Science - California State University, Sacramento 

V. PROJECT MILESTONE 

 Originally, project DispenSUM has six 

key components. These included the module, the 

cartridge, light and sound notification, redundant 

systems, LCD Screen, and the pill crusher. Due 

to time limitations, the pill crusher was not 

included in the laboratory or deployable 

prototype. The design components that were 

kept were verified in the laboratory prototype 

and included in the deployable prototype. Major 

product redesigns were executed in the second 

semester development cycle. This included 

redesigns of all of our project components. Most 

of these features are independent of each other 

until the end when each needed to be integrated 

into the final product.  

During the development of both the 

laboratory and deployable prototype, the 

completion of each key component represented a 

project milestone. Integration of all the 

components into the full design represented a 

milestone, followed by the final development 

step of testing and finalizing each prototype. 

This final step was the last project milestone in 

both of the product development cycles. There 

were a total of eight project milestones each 

semester, or development cycle. 

 

VI. WORK BREAKDOWN STRUCTURE 

Project DispenSUM is a large project 

with many interconnected pieces. In order to 

break the DispenSUM project down into more 

manageable pieces, a work breakdown structure 

was developed. The work breakdown structure 

(WBS), allows the project members to schedule 

individual work packages, determine the order 

they must be completed in, and assign group 

members to work on them. The tables included 

in this section outlines the tasks each group 

member worked on and how much time was 

spent on each task.  

 

Table 2  Jennifer’s Task Hours 

Task Hours 

Setup Raspberry Pi 4 

Programming push-button, LED, 

and motors 

15 

Communication between 

microcontrollers   

10 

Read time program 25 

Laboratory prototype full system 

integration and debug 

20 

Pharmacist GUI 50 

User/Interaction GUI 35 

Deployable prototype full system 

integration and debug 

25 

Documentation 100 

Total Time 284 

 

Table 3 Nael’s Task Hours 

Task Hours 

Documentation  80 

Microcontroller Setup 18 

Communication between 

microcontrollers   

10 

Full system integration and debug 

Laboratory Prototype  

25 

Full system integration and debug 

Deployable Prototype 

40 

RFID System 30 

Function Code 35 

Total Time 238 

 



10 

 

College of Engineering and Computer Science - California State University, Sacramento 

Table 4 Ben’s Task Hours 

Task Hours 

CAD Design 97 

Fabricate 38 

Debugging/Integration 39 

Documentation and paperwork 89 

Total Time 263 

 

Table 5 Nick’s Task Hours 

Task Hours 

CAD Design 70 

Audio Circuit 22 

Cartridge Design 8 

Debugging 39 

Documentation 41 

Linkage System 13 

Arduino System Logic 38 

Total Time 241 

 

Table 6 Dana’s Task Hours 

Task Hours 

CAD Design 60 

Testing system integration and 

feedback sensors 

18 

Machining 19 

3D Printing 38 

Wiring 11 

Documentation 60 

Hardware Implementation and 

testing 

15 

Programming 10 

Total Time 230 

 

VII. RISK ASSESSMENT 

The risk mitigation plans utilized in the 

prototype phase of project DispenSUM include 

deploying parallel critical paths, executing 

redesigns early in the design process, and 

utilizing feedback systems to ensure proper 

functionality of the device. The parallel critical 

paths are used to ensure as many tasks are being 

completed early in the design process by all 

group members. The major required redesign 

involved the cartridge and it was executed early 

in the process. 

 A quick overview of our risk assessment 

for our prototype produced a risk matrix we used 

to identify the riskiest sections of our design. We 

used this matrix to identify what needed 

sufficient mitigation plans. The risk matrix is 

shown in Figure 3 below. 

 

Fig. 3 Risk Matrix 

  

The risk matrix allowed us to focus on 

getting the critical parts in our project done first, 

such as the cartridge design, GUI, and Rotary 

Module. Focusing on the high impact, high risk 

parts gave us enough time to pivot to a new 

design if a design failed. Using this strategy we 

were able to complete the project in the allowed 

time. 

VIII. DESIGN OVERVIEW 



11 

 

College of Engineering and Computer Science - California State University, Sacramento 

 Our design philosophy has always 

followed our principle of SUM, which is safety, 

user friendly, and medication adherence. The 

project has been designed from the ground up 

with these goals in mind. The device is meant to 

be used in the home to keep track of the user’s 

medication schedules and to help them take their 

medicine correctly. For a device to achieve this 

it has to be very easy to use and to be 

autonomous needing little to no maintenance 

from the user. 

 To meet these requirements we created a 

cartridge that is designed to store a specific type 

of medication. These cartridges are delivered to 

the user’s house from a secondary service. The 

cartridges come delivered with medication 

inside as well as the dosing schedule for that 

medication stored onto an RFID tag attached to 

the cartridge. The cartridge system was designed 

so all the patient has to do is receive the 

cartridge and insert it into the device. Once 

inserted the device will read the RFID tag and 

then be able to alert the user when they need to 

take their medication. Once alerted all the user 

has to do is press the dispense button and the 

machine will dispense all their necessary 

medication for that time slot.  

 This functionality meets the design 

requirements since the user has very little 

interaction with the machine which makes it 

very easy to use. This allows the user to get their 

medication safely and easily. The purpose is to 

alleviate the chore and safety issues associated 

with a patient trying to manage many different 

times of medication and their corresponding 

schedules. The machine achieves this since the 

user doesn’t have to manage their medication at 

all, the system does it for them. 

IX. PROTOTYPE STATUS 

 The prototype is in functioning order 

and is ready to demonstrate. Appendix D Part I 

shows the whole system drawing and the 

sections of our device. A smaller version of our 

deployable prototype can be found in Figure 4. 

 

Fig. 4 Deployable Prototype 

 

 The deployable prototype satisfies all 

the conditions we laid out in our design contact 

above. It scans and collects cartridge 

information, dispenses accurate amounts of 

medication on a timer, uses light and sound 

notifications to warn the user, integrates a two-

button design with an easy to use GUI and 

provides the necessary feedback mechanisms to 

ensure errors in the dispense cycle do not 

happen. 

 

X. MARKETABILITY FORECAST 

 A market review was performed to 

determine the market size and current market 

status for our product. The major factors that 

drive the medication management market need 

include growth in population, health care 

expenditures and their related adverse effects of 



12 

 

College of Engineering and Computer Science - California State University, Sacramento 

medication non-adherence [6]. We found that 

many large and small companies are currently 

vying to fill the niche that the DispenSUM 

design fills [7], a medication control device used 

to help solve the problem of medication 

adherence. It has been determined that we are 

following market trends with our current design, 

but we will need to modify several aspects to 

compete directly with other products. It should 

be noted that we closely followed the Code of 

federal Regulation [8] and the Guidance for 

Industry and FDA Staff: Class II Special 

Controls Guidance Document: Remote 

Medication Management System, FDA [9] to 

increase our market viability. Following these 

guidelines and regulations allows our product to 

pass through FDA review and approval faster 

and make it more attractive to potential 

customers. However, we will need significantly 

more documentation in order to satisfy the FDA 

approval process. This is based on Dana Natov’s 

work experience with Gold Standard 

Diagnostics and engineering for the medical 

field. We would also require significantly more 

testing of the design to prove that it can safely 

dispense medication. Testing and documentation 

are not the only necessary changes to help 

compete in the market. 

 Significant software changes are 

required to improve functionality as well as 

assist in scalability. Most of the code 

functionality implemented in our software, 

including the C and Python code, utilize 

functions from pre-existing libraries. In order to 

ensure full ownership, improve processing 

speed, and ensure cheap scalability, we must 

write our own libraries and functions. Doing so 

would improve code processing speed by 

reducing unnecessary functions and only 

processing the code we need. Proprietary code 

will also ensure no outside entity could claim 

ownership to any part of our project. Lastly, lean 

and original code will ensure maximum 

scalability by reducing any costs, which would 

be paid to license third party code, to zero.  

The hardware changes that would 

improve market viability are similar to those that 

are necessary for the software. We are currently 

using three different microcontrollers in the 

DispenSUM design. We can reduce the number 

of microcontrollers by utilizing a multi-core 

microprocessor capable of supporting a full 

operating system such as Linux. Doing so will 

allow us to control the various design 

components, host a full graphical user interface 

as well as reduce the cost in terms of scalability. 

The ARM microcontroller family is currently 

the most viable candidate to replace our three 

different microcontrollers. They are low power, 

support operating system functionality, have 

multiple cores, and their speed is more than 

required to operate our hardware and software 

simultaneously [10]. Reducing our 

microcontrollers from three to one would reduce 

production costs and speed up development 

time. We can also reduce cost by not using the 

proprietary Raspberry Pi touch screen, replacing 

it with a lower cost touch screen and generic 

LCD driver. The aluminium extrusion utilized 

for framing should also be reduced or replaced 

with cheaper materials such as plastic. This will 

reduce unit production cost and allow for more 

competitive market pricing or a greater net profit 

per unit. 

The findings from our Market Review 

Report indicate that we are on track with the 

current development trends [7]. We also found 

that the current return on investment for 

products similar to the DispenSUM design is 

low [6]. Implementing the changes discussed 

here will reduce the production cost per unit and 

drive the price down in terms of large scale 

production. It will also encourage faster 

development times with the reduction from three 

microcontrollers to one. Further testing and 



13 

 

College of Engineering and Computer Science - California State University, Sacramento 

documentation will expedite the regulatory 

validation requirements the design must pass 

through. Collectively, the changes can either 

reduce the cost to the end user or increase the 

rate of return on investment for the design. 

Either outcome will increase the DispenSUM 

design’s ability to compete in the medication 

control and distribution market.  

X. CONCLUSION 

Medication non-adherence is a prevalent 

issue in our society. We decided to tackle this 

societal problem implementing an engineering 

solution. With a few changes in our product 

DispenSUM, we believe that it has the potential 

to make an impact on the problem of medication 

non-adherence. We also believe that our product 

has significant aspects that differentiate from 

other products on the market. Our design 

process consisted of meticulous research, 

constant iteration and principal guidelines. We 

believe our design would suffer substantially if  

these guidelines did not exist. We deem 

DispenSUM to be successful in demonstrating 

our ability as future engineers and a genuine 

product that is marketable beyond the scope of 

this course. 

  

 

REFERENCES 

[1] R. Scott Leslie (2013, July, 19). 

Pharmaceutical Programming. [Online], 

Available: 

http://www.wuss.org/proceedings08/08WU

SS%20Proceedings/papers/anl/anl09.pdf 

[2] W. H. Organization, E. Sabate, W. H. O. 

Staff, and Sabate Eduardo, Adherence to 

long-term therapies: Evidence for action. 

Geneva: World Health Organization, 2003. 

[3] Medication Adherence - “Taking Your 

Meds as Directed.” American Heart 

Association. 

[4] Code of Federal Regulations 72 FR 

59177, Oct. 19, 2007 

[5] Guidance for Industry and FDA Staff: 

Class II Special Controls Guidance 

Document: Remote Medication 

Management System, FDA 

[6] Transparency Market Research, 

“Medication Management Market - Global 

Industry Analysis, Size, Share, Growth, 

Tends and Forecas, 2016-2024,” 2016. 

[Online]. Available: 

http://www.transparencymarketresearch.co

m/medication-management-market.html 

[7] Benjamin Green, et al. "Market Analysis 

and Review," California State University, 

Sacramento, 2017 

[8] Code of Federal Regulations 72 FR 

59177, Oct. 19, 2007 

[9] Guidance for Industry and FDA Staff: 

Class II Special Controls Guidance 

Document: Remote Medication 

Management System, FDA 

[10] ARM Ltd., "www.arm.com," 

ARM Ltd., 1995 - 2017. [Online]. 

Available: 

https://www.arm.com/products/processors. 

[Accessed 1 May 2017]. 
 

GLOSSARY 

1. CAD - Acronym for Computer Aided 

Design 

2. Cartridge - One of the main parts of our 

design. The cartridge is a separate entity 

from the main unit that will hold all 

medication. The cartridge is designed to be 

swappable and will come with pre-

programmed medical instructions. 

3. DispenSUM - The project name for Group 

four’s senior design project 

4. FDA - U.S. Food and Drug Administration 

5. GUI - Graphical User Interface 

6. Medication Adherence - Adherence to, or 

compliance with, a medication regimen is 

generally defined as the extent to which a 

person takes medications as prescribed by 

their healthcare providers. 

7. RFID - Radio-Frequency IDentification 

http://www.transparencymarketresearch.com/medication-management-market.html
http://www.transparencymarketresearch.com/medication-management-market.html


14 

 

College of Engineering and Computer Science - California State University, Sacramento 

8. Rotary Carousel - The rotating portion of 

the dispense module 

9. Slip Ring - A rotating brushed contact 

design that enables a circuit to maintain 

contact through continuous 360 degree 

rotation 

10. SUM - Safety, User Friendly, and 

Medication Adherence 

11. WBS - Work Breakdown Structure 

 

 

 

 

 

 

 

 



 
 

A-1 
 

Pharmacist User Manual 

 

Step one open application: 

 

Figure 1 Patient Medication Form 

Step two load information:  

- Fill in all name and contact information accordingly. (no more then 28 characters allowed 

including spaces) 

- Quantity, Dose, and Frequency only numerical value allowed 

- Must select yes or no to “As Needed” field 

- Then number of time stamps check need to match frequency number 

 

 

Step three transfer data: 



 
 

A-2 
 

Figure 2 Bottom of cartridge and memory sticker 

   

 

 

 

 

 

 

 

 

    

 

- Make sure that the cartridge has an RFID Tag or Memory Sticker at the bottom of it 

                                        

Figure 4 Data Transfer Box                                                                                                 Figure 5 Cartridge and DTB 

- Place cartridge onto the data transfer box(DTB) like shown in Figure 5 

- Then select the Submit button on screen 

 

 

Figure 6 Fill Forum Submit Buttom 

 

Figure 3 Medication Cartridge 



 
 

A-3 
 

Home User Manual 

 

Loading The Medication: 

Step 1: Power on device 

Step 2: Select the load button on screen 

 

Figure 7 Main Menu 



 
 

A-4 
 

 

Step 3: Insert Cartridge into the holder upside down with the opening side closest to you.  

 

 

Figure 8 Cartridge Holder 

Step 4: Check to see if medication is loading by pressing the Medication button 

 If you don’t see you medication on the list either try again or press the help button and your 

caregiver will be notified  

 

Figure 9 Medication List 

 

 



 
 

A-5 
 

Taking Your Medication: 

Now comes the easy part all you have to do is wait for the notification sound to go off and then press the 

dispense button 

 

Figure 10 Help and Dispense Button 



B1 
 

Appendix B - Hardware 

I. Micrcontroller 

The microcontroller is the one of main 

components of the DispenSUM design, as it is 

responsible for performing all the functions and 

commands of pill-dispensing. We decided early 

on that our design would require two 

microcontrollers, the Arduino Uno and the 

Raspberry Pi. A third microcontroller was 

implemented to offload the processing demands 

of the load cell scale. The Adafruit Trinket, 

shown in Figure 1, was chosen for its small 

footprint, fast processing power, and the desired 

number of input and output pins it has. 

 

 

Figure 1 - The Adafruit Trinket Microcontroller – image 

provided by Adafruit 

The addition of the Trinket microcontroller is 

necessary due to the processing demands of both 

the load cell scale and stepper motors. The two 

required fast code execution times.  

 Our design required the Arduino Uno and 

Raspberry Pi. pictured in Figure 2 and 3, to be 

able to interact with one another, therefore the 

USB port was used for communication between 

Arduino and the Raspberry Pi.  

  

 

Figure 2 - The Arduino Uno Microcontroller – image 

provided by Arduino 

The third microcontroller that was used 

was the Raspberry Pi 3. For the device we have 

the Raspberry Pi connected to the internet via 

Wifi, and it sends signals to the Arduino via the 

serial console through the USB communication 

port. Having the Raspberry Pi automatically 

connect to the internet is a key feature because it 

provides our device with an accurate clock which 

is need as medication is dispensed on a time 

schedule. 

 

Figure 3 - The Raspberry Pi 3 Model B System on a Chip  - 

image provided by Raspberry Pi Foundation 

II. User Interface 

The Raspberry Pi hosts a custom 

graphical user interface, utilizing a touch screen 

for user interface. Two large tactile push buttons 

are also implemented for easy user interaction. 

Figure 5 shows the touch screen and the two 

tactile pushbuttons. 



B2 
 

 

Figure 4 - The DispenSUM design with the touchscreen 

mounted on the top and the help and dispense button 

located on the bottom left of the design 

The Raspberry Pi touch screen is the proprietary 

touch screen offered directly from the Raspberry 

Pi foundation. Figure 6 is the touch screen, 

unmounted.  

 

Figure 5 - The Unmounted Raspberry Pi touch screen – 

image provided by Raspberry Pi Foundation 

 

III. Mechanical Drive Hardware 

 The hardware utilized for the drive 

system of the DispenSUM design include two 12 

V 500 mA per phase NEMA 17 stepper motors, 

two Pololu DRV8825 stepper motor drivers, a 

single 7.2 V 180-degree non-continuous servo, 

and a single buck converter. Figure 6 is an image 

of the NEMA 17 stepper motor mounted in the 

design. 

 

Figure 6 - The NEMA 17 stepper motor mounted in the 

DispenSUM design, driving the rotary carousel 

The NEMA 17 motors require driver circuits to 

function. We chose the Pololu DRV8825 motor 

drivers, shown in Figure 7. 

 

Figure 7- The Pololu DRV8825 stepper motor driver – 

image provided by Pololu Corporation  

Figure 8 is an image of the servo mounted in the 

DispenSUM design. 



B3 
 

 

Figure 8 - The servo mounted in the design 

The servo requires 7.2 V to operate so we utilized 

a buck converter to step the 12 V supply voltage 

to 7.2 V. Figure 9 is an image of the DROK buck 

converter implemented in our project.  

 

 

Figure 9 - The DROK buck converter 

IV. Feedback Systems 

 There are multiple sensors and a RFID 

communication device utilized for feedback 

systems in the DispenSUM design. These sensors 

include a Uxcel load cell and SMAKN HX711 

weighing sensor AD module for the load cell, a 

modified QTI sensor, and the MIFARE RFID 

reader. Figure 10 is the load cell. 

 

 

Figure 10 - The load cell mounted under the QTI chute and 

weigh plate 

Figure 11 is an image of the HX711 weighing 

sensor mounted in the design. 

 

 

Figure 11 - The SMAKN HX711 weighing sensor 

Figure 12 is an image of the modified QTI 

sensor mounted on the pill chute. 

 

Figure 12 - The modified QTI sensor mounted onto the pill 

chute 



B4 
 

Figure 13 is an image of the MIFARE RFID 

reader implemented in the design. 

 

 

Figure 13 - The MIFARE RFID reader – Image provided 

by Gear Best 



C-1 
 

Appendix C. Software 

I. Software System Overview 

The software for this project is broken down into several parts which is shown below in Figure 1. By splitting 

the software into several parts we were able to work on different parts simultaneously and it made the testing 

process more efficient. There is four main software parts and they all depend on one another for correct functioning. 

The pharmacist GUI was the first program that was created and this was integrated with the RFID code which is a 

crucial part of the overall software system as connects the 

pharmacist GUI to the codes on the Raspberry Pi. 

  Figure 1. Software Block Diagram 

 

II. Pharmacist GUI 

The purpose of the pharmacist GUI program is to obtain 

medication information for our device. Below in figure 2. is a 

flowchart showing how the program functions. Included in the 

flowchart is the RFID code which will be covered in more detail in 

the RFID section on this appendix. 

  

A. Code 

The pharmacist GUI program was written in python 

language using the Tkinter package and the code is shown 

below. 

#!/usr/bin/python 

 

from Tkinter import * 

from PIL import ImageTk, Image  

 

#if user presses the tab key the cursor 

moves to the next text widget 

def focus_next_window(event): 

 event.widget.tk_focusNext().focus() 

 return("break") 

                                                                                                                            Figure 2. Pharmacist GUI 

Flowchart 
#check if number of medication times entered and selected match                                                                                                                                                               



C-2 
 

def count():                                        
 button_count = checkVar0.get() + checkVar1.get() + checkVar2.get() + 

checkVar3.get() + checkVar4.get() + checkVar5.get() + checkVar6.get() + 

checkVar7.get() + checkVar8.get() + checkVar9.get() + checkVar10.get() + 

checkVar11.get() + checkVar12.get() + checkVar13.get() 

 print button_count 

 freq_string = frequency.get("1.0", 'end-1c') 

 freq_int = int(freq_string) 

 if button_count > freq_int: 

  t1 = Toplevel(root) 

  t1.configure(bg='white') 

  t1.geometry("600x100") 

  w = 600 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t1.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

  #t1.grab_set()   #had to comment out on RPi 

  t1.attributes("-topmost", True) 

  Label(t1, text='Number of selected medication times does not 

match entered medication frequency').pack(padx=10, pady=5) 

  Label(t1, text='Please deselect one of the medication time or 

change medication frequency to continue').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t1, text="Ok", bg='white', 

command=t1.destroy).pack(pady=10) 

 

#enables medication time checkboxes 

def enable(): 

 check0.config(state=NORMAL) 

 check1.config(state=NORMAL) 

 check2.config(state=NORMAL) 

 check3.config(state=NORMAL) 

 check4.config(state=NORMAL) 

 check5.config(state=NORMAL) 

 check6.config(state=NORMAL) 

 check7.config(state=NORMAL) 

 check8.config(state=NORMAL) 

 check9.config(state=NORMAL) 

 check10.config(state=NORMAL) 

 check11.config(state=NORMAL) 

 check12.config(state=NORMAL) 

 check13.config(state=NORMAL) 

 

#disables medication time checkboxes 

def disable(): 

 check0.config(state=DISABLED) 

 check1.config(state=DISABLED) 

 check2.config(state=DISABLED) 

 check3.config(state=DISABLED) 

 check4.config(state=DISABLED) 

 check5.config(state=DISABLED) 



C-3 
 

 check6.config(state=DISABLED) 

 check7.config(state=DISABLED) 

 check8.config(state=DISABLED) 

 check9.config(state=DISABLED) 

 check10.config(state=DISABLED) 

 check11.config(state=DISABLED) 

 check12.config(state=DISABLED) 

 check13.config(state=DISABLED) 

 

def getData(): 

 #check if text widgets are empty 

 if name.compare("end-1c", "==", "1.0"): 

  t1 = Toplevel(root) 

  t1.configure(bg='white') 

  t1.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t1.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

  t1.grab_set() 

  t1.attributes("-topmost", True) 

  Label(t1, text='Patient Name entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t1, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t1, text="Ok", bg='white', 

command=t1.destroy).pack(pady=5) 

  return 

 

 if name_addr.compare("end-1c", "==", "1.0"): 

  t2 = Toplevel(root) 

  t2.configure(bg='white') 

  t2.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t2.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t2.grab_set() 

  t2.attributes("-topmost", True) 

  Label(t2, text='Patient Name Email Address entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t2, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 



C-4 
 

  b1 = Button(t2, text="Ok", bg='white', 

command=t2.destroy).pack(pady=5) 

  return 

 

 if emergency_name.compare("end-1c", "==", "1.0"): 

  t3 = Toplevel(root) 

  t3.configure(bg='white') 

  t3.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t3.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t3.grab_set() 

  t3.attributes("-topmost", True) 

  Label(t3, text='Emergency Contact Name entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t3, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t3, text="Ok", bg='white', 

command=t3.destroy).pack(pady=5) 

  return 

 

 if emergency_addr.compare("end-1c", "==", "1.0"): 

  t4= Toplevel(root) 

  t4.configure(bg='white') 

  t4.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t4.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t4.grab_set() 

  t4.attributes("-topmost", True) 

  Label(t4, text='Emergency Contact Email Address entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t4, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t4, text="Ok", bg='white', 

command=t4.destroy).pack(pady=5) 

  return 

 

 if med_name.compare("end-1c", "==", "1.0"): 

  t5 = Toplevel(root) 

  t5.configure(bg='white') 



C-5 
 

  t5.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t5.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t5.grab_set() 

  t5.attributes("-topmost", True) 

  Label(t5, text='Medication Name entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t5, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t5, text="Ok", bg='white', 

command=t5.destroy).pack(pady=5) 

  return 

 

 if quantity.compare("end-1c", "==", "1.0"): 

  t6 = Toplevel(root) 

  t6.configure(bg='white') 

  t6.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t6.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t6.grab_set() 

  t6.attributes("-topmost", True) 

  Label(t6, text='Medication Quantity entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t6, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t6, text="Ok", bg='white', 

command=t6.destroy).pack(pady=5) 

  return 

 else: 

  try: 

   quantity_string = quantity.get("1.0", 'end-1c') 

   quantity_int = int(quantity_string) 

   print 'true' 

  except: 

   print 'false' 

   t7 = Toplevel(root) 

   t7.configure(bg='white') 

   t7.geometry("400x100") 

   w = 400 



C-6 
 

   h = 100 

   # get screen width and height 

   ws = root.winfo_screenwidth() 

   hs = root.winfo_screenheight() 

   x = (ws/2) - (w/2) 

   y = (hs/2) - (h/2) 

   # set the dimensions of the screen and where it is placed 

   t7.geometry('%dx%d+%d+%d' % (w, h, x, y))   

   t7.grab_set() 

   t7.attributes("-topmost", True) 

   Label(t7, text='Medication Quantity entry invalid', 

bg='white').pack(padx=10, pady=5) 

   Label(t7, text='Please enter in a valid number to 

continue', bg='white').pack(padx=10) 

 

   #t1.grab_release() 

   b1 = Button(t7, text="Ok", bg='white', 

command=t7.destroy).pack(pady=5) 

   return 

 

 if dose.compare("end-1c", "==", "1.0"): 

  t8 = Toplevel(root) 

  t8.geometry("400x100") 

  t8.configure(bg='white')› 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t8.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t8.grab_set() 

  t8.attributes("-topmost", True) 

  Label(t8, text='Medication Dose entry invalid', 

bg='white').pack(padx=10, pady=5) 

  Label(t8, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t8, text="Ok", bg='white', 

command=t8.destroy).pack(pady=5) 

  return 

 else: 

  try: 

   dose_string = dose.get("1.0", 'end-1c') 

   dose_int = int(dose_string) 

   print 'true' 

  except: 

   print 'false' 

   t9 = Toplevel(root) 

   t9.configure(bg='white') 

   t9.geometry("400x100") 

   w = 400 

   h = 100 

   # get screen width and height 



C-7

ws = root.winfo_screenwidth() 

hs = root.winfo_screenheight() 

x = (ws/2) - (w/2) 

y = (hs/2) - (h/2) 

# set the dimensions of the screen and where it is placed 

t9.geometry('%dx%d+%d+%d' % (w, h, x, y))  

t9.grab_set() 

t9.attributes("-topmost", True) 

Label(t9, text='Medication Dose entry invalid', 

bg='white').pack(padx=10, pady=5) 

Label(t9, text='Please enter in a valid number to 

continue', bg='white').pack(padx=10) 

#t1.grab_release() 

b1 = Button(t9, text="Ok", bg='white', 

command=t9.destroy).pack(pady=5) 

return 

if frequency.compare("end-1c", "==", "1.0"): 

t10 = Toplevel(root) 

t10.configure(bg='white') 

t10.geometry("400x100") 

w = 400 

h = 100 

# get screen width and height 

ws = root.winfo_screenwidth() 

hs = root.winfo_screenheight() 

x = (ws/2) - (w/2) 

y = (hs/2) - (h/2) 

# set the dimensions of the screen and where it is placed 

t10.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

t10.grab_set() 

t10.attributes("-topmost", True) 

Label(t10, text='Medication Frequency entry invalid', 

bg='white').pack(padx=10, pady=5) 

Label(t10, text='Please complete this field to continue', 

bg='white').pack(padx=10) 

#t1.grab_release() 

b1 = Button(t10, text="Ok", bg='white', 

command=t10.destroy).pack(pady=5) 

return 

else: 

try: 

f_string = frequency.get("1.0", 'end-1c') 

f_int = int(f_string) 

print 'true' 

except: 

print 'false' 

t11 = Toplevel(root) 

t11.geometry("400x100") 

w = 400 

h = 100 

# get screen width and height 

ws = root.winfo_screenwidth() 

hs = root.winfo_screenheight() 

x = (ws/2) - (w/2) 



C-8 
 

   y = (hs/2) - (h/2) 

   # set the dimensions of the screen and where it is placed 

   t11.geometry('%dx%d+%d+%d' % (w, h, x, y))   

   t11.grab_set() 

   t11.attributes("-topmost", True) 

   Label(t11, text='Medication Quantity entry invalid', 

bg='white').pack(padx=10, pady=5) 

   Label(t11, text='Please enter in a valid number to 

continue', bg='white').pack(padx=10) 

 

   #t1.grab_release() 

   b1 = Button(t11, text="Ok", bg='white', 

command=t11.destroy).pack(pady=5) 

   return 

 

 if var_ans.get() == 0: 

  t12 = Toplevel(root) 

  t12.configure(bg='white') 

  t12.geometry("400x100") 

  w = 400 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t12.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t12.grab_set() 

  t12.attributes("-topmost", True) 

  Label(t12, text='Is this an AS NEEDED medication?', 

bg='white').pack(padx=10, pady=5) 

  Label(t12, text='Please provide an answer on the medication 

form', bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t12, text="Ok", bg='white', 

command=t12.destroy).pack(pady=5) 

  return 

 

 button_count = checkVar0.get() + checkVar1.get() + checkVar2.get() + 

checkVar3.get() + checkVar4.get() + checkVar5.get() + checkVar6.get() + 

checkVar7.get() + checkVar8.get() + checkVar9.get() + checkVar10.get() + 

checkVar11.get() + checkVar12.get() + checkVar13.get() 

 print button_count 

 freq_string = frequency.get("1.0", 'end-1c') 

 freq_int = int(freq_string) 

 print freq_int 

  

 if var_ans.get() == 2 and button_count != freq_int: 

  t13 = Toplevel(root) 

  t13.configure(bg='white') 

  t13.geometry("600x100") 

  w = 600 

  h = 100 

  # get screen width and height 

  ws = root.winfo_screenwidth() 



C-9 
 

  hs = root.winfo_screenheight() 

  x = (ws/2) - (w/2) 

  y = (hs/2) - (h/2) 

  # set the dimensions of the screen and where it is placed 

  t13.geometry('%dx%d+%d+%d' % (w, h, x, y))   

  t13.grab_set() 

  t13.attributes("-topmost", True) 

  Label(t13, text='Number of selected medication times does not 

match entered medication frequency', bg='white').pack(padx=10, pady=5) 

  Label(t13, text='Please change medication time or medication 

frequency to continue', bg='white').pack(padx=10) 

 

  #t1.grab_release() 

  b1 = Button(t13, text="Ok", bg='white', 

command=t13.destroy).pack(pady=10) 

  return 

 else: 

  file1 = open("Data.txt", "w+") 

 

  na = ("%s#" % name.get("1.0", 'end-1c')) 

  addr = ("%s#" % name_addr.get("1.0", 'end-1c')) 

  ename = ("%s#" % emergency_name.get("1.0", 'end-1c')) 

  eaddr= ("%s#" % emergency_addr.get("1.0", 'end-1c')) 

  mname = ("%s#" % med_name.get("1.0", 'end-1c')) 

  quant = ("%s#" % quantity.get("1.0", 'end-1c')) 

  f = ("%s#" % frequency.get("1.0", 'end-1c')) 

  d = ("%s#" % dose.get("1.0", 'end-1c')) 

  nt = ("%s#" % notes.get("1.0", 'end-1c')) 

 

  file1.write("%s\n" % na) 

  file1.write("%s\n" % addr) 

  file1.write("%s\n" % ename) 

  file1.write("%s\n" % eaddr) 

  file1.write("%s\n" % mname) 

  file1.write("%s\n" % quant)  

  file1.write("%s\n" % f) 

  file1.write("%s\n" % d) 

  file1.write("%s\n" % nt) 

   

  if var_ans.get() == 1: 

   file1.write("As needed#\n") 

  if var_ans.get() == 2: 

   file1.write("Schedule#\n") 

 

  #checkbox selected --> checkbox state = 1; checkbox unselected --

> checkbox state = 0 

  if checkVar0.get() == 1: 

   file1.write("7#\n") 

  if checkVar1.get() == 1: 

   file1.write("8#\n") 

  if checkVar2.get() == 1: 

   file1.write("9#\n") 

  if checkVar3.get() == 1: 

   file1.write("10#\n") 

  if checkVar4.get() == 1: 

   file1.write("11#\n") 

  if checkVar5.get() == 1: 



C-10 
 

   file1.write("12#\n") 

  if checkVar6.get() == 1: 

   file1.write("13#\n") 

  if checkVar7.get() == 1: 

   file1.write("14#\n") 

  if checkVar8.get() == 1: 

   file1.write("15#\n") 

  if checkVar9.get() == 1: 

   file1.write("16#\n") 

  if checkVar10.get() == 1: 

   file1.write("17#\n") 

  if checkVar11.get() == 1: 

   file1.write("18#\n") 

  if checkVar12.get() == 1: 

   file1.write("19#\n") 

  if checkVar13.get() == 1: 

   file1.write("20#\n") 

 

  file1.write("!") 

  file1.close() 

  root.destroy() 

 

root = Tk() 

root.configure(bg='white') 

root.geometry("700x680") 

w = 700 

h = 680 

# get screen width and height 

ws = root.winfo_screenwidth() 

hs = root.winfo_screenheight() 

x = (ws/2) - (w/2) 

y = (hs/2) - (h/2) 

# set the dimensions of the screen and where it is placed 

root.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

root.title('DispenSUM Medication Form') 

 

frame1 = Frame(root, bg='white') 

 

heading = Label(frame1, text="Patient Medication Form                ", 

font="None 18", bg='white') 

heading.grid(row=0, column=0, sticky=S) 

 

temp = Image.open("image.jpg") 

temp = temp.save("image.ppm", "ppm") 

image = PhotoImage(file = "image.ppm") 

imagepanel = Label(frame1, image=image, bg='white') 

imagepanel.grid(row=0, column=1, sticky=E) 

 

frame1.grid_columnconfigure(0, weight=1) 

frame1.grid_columnconfigure(1, weight=1) 

 

frame2 = Frame(root, bg='SteelBlue3', width=85) 

 

subheading1 = Label(frame2, text="PATIENT INFORMATION", font="None 12 

bold", bg='SteelBlue3', fg='white') 

subheading1.pack() 

 



C-11 
 

frame3 = Frame(root, bg='white') 

 

Label(frame3, text="Name:", width=35, anchor=W, bg='white').grid(row=0, 

column=0, sticky=E) 

name = Text(frame3, bd=3, width=50, height=1, relief=SUNKEN, bg='white') 

name.grid(row=0, column=1, sticky=W) 

name.bind("<Tab>", focus_next_window) 

 

Label(frame3, text="Email Address:", width=35, anchor=W, 

bg='white').grid(row=1, column=0, sticky=E, pady=10) 

name_addr = Text(frame3, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

name_addr.grid(row=1, column=1, sticky=W) 

name_addr.bind("<Tab>", focus_next_window) 

 

Label(frame3, text="Emergency Contact Name:", width=35, anchor=W, 

bg='white').grid(row=2, column=0, sticky=E) 

emergency_name = Text(frame3, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

emergency_name.grid(row=2, column=1, sticky=W) 

emergency_name.bind("<Tab>", focus_next_window) 

 

Label(frame3, text="Emergency Contact Email Address:", width=35, anchor=W, 

bg='white').grid(row=3, column=0, sticky=E, pady=10) 

emergency_addr = Text(frame3, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

emergency_addr.grid(row=3, column=1, sticky=W) 

emergency_addr.bind("<Tab>", focus_next_window) 

 

frame3.grid_columnconfigure(0, weight=1) 

frame3.grid_columnconfigure(1, weight=1) 

 

frame4 = Frame(root, bg='SteelBlue3') 

 

subheading2 = Label(frame4, text="MEDICATION INFORMATION", font="None, 12 

bold", bg='SteelBlue3', fg='white') 

subheading2.pack() 

 

frame5 = Frame(root, bg='white') 

 

Label(frame5, text="Name/Strength:", width=35, anchor=W, 

bg='white').grid(row=0, column=0, sticky=E) 

med_name = Text(frame5, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

med_name.grid(row=0, column=1, sticky=W) 

med_name.bind("<Tab>", focus_next_window) 

 

Label(frame5, text="Quantity:", width=35, anchor=W, 

bg='white').grid(row=1, column=0, sticky=E, pady=10) 

quantity = Text(frame5, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

quantity.grid(row=1, column=1, sticky=W) 

quantity.bind("<Tab>", focus_next_window) 

 

Label(frame5, text="Dose (number of pills taken each time):", width=35, 

anchor=W, bg='white').grid(row=2, column=0, sticky=E) 

dose = Text(frame5, bd=3, width=50, height=1, relief=SUNKEN, bg='white') 



C-12 
 

dose.grid(row=2, column=1, sticky=W) 

dose.bind("<Tab>", focus_next_window) 

 

Label(frame5, text="Frequency (number of times taken per day):", width=35, 

anchor=W, bg='white').grid(row=3, column=0, sticky=E, pady=10) 

frequency = Text(frame5, bd=3, width=50, height=1, relief=SUNKEN, 

bg='white') 

frequency.grid(row=3, column=1, sticky=W) 

frequency.bind("<Tab>", focus_next_window) 

 

Label(frame5, text="Medication Instructions:", width=35, anchor=W, 

bg='white').grid(row=4, column=0, sticky=E) 

notes = Text(frame5, bd=3, width=50, height=4, relief=SUNKEN, bg='white') 

notes.grid(row=4, column=1, sticky=W) 

notes.bind("<Tab>", focus_next_window) 

 

frame5.grid_columnconfigure(0, weight=1) 

frame5.grid_columnconfigure(1, weight=1) 

 

 

frame6 = Frame(root, bg='white') 

 

Label(frame6, text="Is this an AS NEEDED medication?", anchor=W, 

bg='white').grid(row=0, column=0, columnspan=2, sticky=W, pady=10) 

var_ans = IntVar() 

Radiobutton(frame6, text="Yes", variable=var_ans, value=1, bg='white', 

highlightbackground='white', command=disable).grid(row=0, column=2, padx=10, 

sticky=W) 

Radiobutton(frame6, text="No", variable=var_ans, value=2, bg='white', 

highlightbackground='white', command=enable).grid(row=0, column=3, sticky=W) 

 

Label(frame6, text="Medication Times:", anchor=W, width=20, 

bg='white').grid(row=1, column=0, sticky=E) 

checkVar0 = IntVar() 

check0 = Checkbutton(frame6, text="07:00", variable=checkVar0, bg='white', 

highlightbackground='white', command=count) 

check0.grid(row=1, column=1, sticky=W) 

checkVar1 = IntVar() 

check1 = Checkbutton(frame6, text="08:00", variable=checkVar1, bg='white', 

highlightbackground='white', command=count) 

check1.grid(row=1, column=2, padx=9, sticky=W) 

checkVar2 = IntVar() 

check2 = Checkbutton(frame6, text="09:00", variable=checkVar2, bg='white', 

highlightbackground='white', command=count) 

check2.grid(row=1, column=3, sticky=W) 

checkVar3 = IntVar() 

check3 = Checkbutton(frame6, text="10:00", variable=checkVar3, bg='white', 

highlightbackground='white', command=count) 

check3.grid(row=1, column=4, padx=9, sticky=W) 

checkVar4 = IntVar() 

check4 = Checkbutton(frame6, text="11:00", variable=checkVar4, bg='white', 

highlightbackground='white', command=count) 

check4.grid(row=1, column=5, sticky=W) 

checkVar5 = IntVar() 

check5 = Checkbutton(frame6, text="12:00", variable=checkVar5, bg='white', 

highlightbackground='white', command=count) 

check5.grid(row=1, column=6, padx=9, sticky=W) 



C-13 
 

checkVar6 = IntVar() 

check6 = Checkbutton(frame6, text="13:00", variable=checkVar6, bg='white', 

highlightbackground='white', command=count) 

check6.grid(row=1, column=7, sticky=W) 

checkVar7 = IntVar() 

check7 = Checkbutton(frame6, text="14:00", variable=checkVar7, bg='white', 

highlightbackground='white', command=count) 

check7.grid(row=2, column=1, sticky=W) 

checkVar8 = IntVar() 

check8 = Checkbutton(frame6, text="15:00", variable=checkVar8, bg='white', 

highlightbackground='white', command=count) 

check8.grid(row=2, column=2, padx=9, sticky=W) 

checkVar9 = IntVar() 

check9 = Checkbutton(frame6, text="16:00", variable=checkVar9, bg='white', 

highlightbackground='white', command=count) 

check9.grid(row=2, column=3, sticky=W) 

checkVar10 = IntVar() 

check10 = Checkbutton(frame6, text="17:00", variable=checkVar10, 

bg='white', highlightbackground='white', command=count) 

check10.grid(row=2, column=4, padx=9, sticky=W) 

checkVar11 = IntVar() 

check11 = Checkbutton(frame6, text="18:00", variable=checkVar11, 

bg='white', highlightbackground='white', command=count) 

check11.grid(row=2, column=5, sticky=W) 

checkVar12 = IntVar() 

check12 = Checkbutton(frame6, text="19:00", variable=checkVar12, 

bg='white',highlightbackground='white', command=count) 

check12.grid(row=2, column=6, padx=9, sticky=W) 

checkVar13 = IntVar() 

check13 = Checkbutton(frame6, text="20:00", variable=checkVar13, 

bg='white', highlightbackground='white', command=count) 

check13.grid(row=2, column=7, sticky=W) 

 

frame6.grid_columnconfigure(0, weight=1) 

frame6.grid_columnconfigure(1, weight=1) 

frame6.grid_columnconfigure(2, weight=1) 

frame6.grid_columnconfigure(3, weight=1) 

frame6.grid_columnconfigure(4, weight=1) 

frame6.grid_columnconfigure(5, weight=1) 

frame6.grid_columnconfigure(6, weight=1) 

frame6.grid_columnconfigure(7, weight=1) 

 

frame7 = Frame(root, bg='white') 

 

b1 = Button(frame7,text="Submit", command=getData, bg='white') 

b2 = Button(frame7,text="Cancel", command=root.destroy, bg='white') 

b1.pack(side=LEFT,padx=10, pady=10) 

b2.pack(side=LEFT,padx=10, pady=10) 

 

frame1.pack() 

frame2.pack(pady=2, fill=BOTH) 

frame3.pack(padx=5) 

frame4.pack(pady=2, fill=BOTH) 

frame5.pack(padx=5) 

frame6.pack(pady=5, padx=5) 

frame7.pack() 

 



C-14 
 

root.mainloop() 

Figure 2. Pharmacist GUI Code 
 

B. Testing 

The GUI features multiple entry fields, checkboxes, and buttons. Since the purpose of the GUI is to 

create a text file containing all the data entered, every component was tested for correct functionality. When 

testing each text field everything worked as expected. All the dummy text entered into the text field appeared in 

the text file that was created (refer to Figure 1 and Figure 2).  

 

 
 Figure 1 - DispenSUM Medication Form GUI   

 



C-15 
 

 
Figure 2 - ASCII Text File generated  from DispenSUM Medication Form GUI 

 

In this process the button for submit was verified to be working correctly as this button is used to start 

the function that creates a text file and writes to it. Also testing was run on empty text fields and the result was 

that if there was a empty text field and the user pressed the submit button it would not create a text file and 

write data to it. Instead a window would pop up notifying the user that they need to complete the empty text 

field. Testing was completed on the checkboxes by adding a line of code which would print the state value of 

the checkbox on the command line of terminal. With the GUI program running all the checkboxes were selected 

and deselected one at a time. Each time a checkbox was checked a „1‟ was printed on the command line and 

when the checkbox was unchecked a „0‟ was printed in the command line (refer to Fig 3 and Fig 4). This result 

verified that the checkboxes function correctly as the state of the checkbox is 1 for checked and 0 for 

unchecked.  

 

  
Figure 3 - DispenSUM Medication Form  Figure 4 - DispenSUM Medication Form GUI command line output 
       GUI code for testing checkboxes 

Initially the GUI program was tested on a computer running on a Mac OS  however when the RFID code 

was added it was tested on a Linux OS because the RFID code that is being used can only function on a Linux 

OS.  When running the GUI program on a Linux OS The appearance of this graphical user interface varies 

slightly when run on different operating systems. 

 

III. RFID 

 For memory connection between the pharmacist GUI and User GUI we used an RFID system. We used two 

Mifare rc522 RFID read writeres. The first one was attached to an arduino uno. This system used used a modified 

version of the demo code to write. Changed that were made allowed us to access all 64 sections. Couple of 

limitations with this system is that we are required to have a termination character while the information is being 

sent through because of this that special character can not be used for any other purposes, this can be seen in figure 2  



C-16 
 

The second thing is that there is a character limit of 28 characters for each line that can be sent though. Using a 

python equivalent version of the code was used to then transfer the information from the RFID tag to the RPI.     

A. Code 

UNO CODE: 

 

#include <SPI.h> 

#include <MFRC522.h> 

 

#define RST_PIN         9           // Configurable, see typical pin layout above 

#define SS_PIN          10          // Configurable, see typical pin layout above 

 

MFRC522 mfrc522(SS_PIN, RST_PIN);   // Create MFRC522 instance 

 

void setup() { 

        Serial.begin(9600);        // Initialize serial communications with the PC 

        SPI.begin();               // Init SPI bus 

        mfrc522.PCD_Init();        // Init MFRC522 card 

        Serial.println(F("Write personal data on a MIFARE PICC ")); 

} 

 

void loop() { 

         

         

        //int k = 9; 

        // Prepare key - all keys are set to FFFFFFFFFFFFh at chip delivery from the factory. 

         

        MFRC522::MIFARE_Key key; 

        for (byte i = 0; i < 6; i++) key.keyByte[i] = 0xFF; 

         

        // Look for new cards 

        if ( ! mfrc522.PICC_IsNewCardPresent()) { 

                return; 



C-17 
 

        } 

 

        // Select one of the cards 

        if ( ! mfrc522.PICC_ReadCardSerial())    return; 

         

        Serial.print(F("Card UID:"));    //Dump UID 

        for (byte i = 0; i < mfrc522.uid.size; i++) { 

          Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "); 

          Serial.print(mfrc522.uid.uidByte[i], HEX); 

        }  

        Serial.print(F(" PICC type: "));   // Dump PICC type 

        MFRC522::PICC_Type piccType = mfrc522.PICC_GetType(mfrc522.uid.sak); 

        Serial.println(mfrc522.PICC_GetTypeName(piccType)); 

         

        byte buffer[34];   

        byte block; 

        MFRC522::StatusCode status; 

        byte len; 

        int chip[] = 

{1,2,4,5,6,8,9,10,12,13,14,16,17,18,20,21,22,24,25,26,28,29,30,32,33,34,36,37,38,40,41,42,44,45,46,48,49,50,52,53

,54,56,57,58,59,60,61,62}; 

        int j; 

        for(j = 0; j < 48; j++) 

        { 

        Serial.setTimeout(2000000L) ;     // wait until 20 seconds for input from serial 

        // Ask personal data: Family name 

        //Serial.println(j); 

         

        Serial.println(F("Type Family name, ending with #")); 

        len=Serial.readBytesUntil('#', (char *) buffer, 30) ; // read family name from serial 

        for (byte i = len; i < 30; i++) buffer[i] = ' ';     // pad with spaces 



C-18 
 

        //Serial.println(j); 

        /*if(j == 3 || j == 7 || j ==11 || j ==15 ||j == 19 ||j == 23 ||j == 27 ||j == 31 ||j == 35 ||j == 39 ||j == 43 ||j == 47 ||j  

== 51 ||j == 55 ||j == 59) 

        { 

          Serial.println("Entered IF"); 

          j++; 

          //Serial.println("New J:" j);  

        }*/ 

          

        block = chip[j]; 

        //Serial.println(j); 

        //Serial.println(F("Authenticating using key A...")); 

        status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, block, &key, 

&(mfrc522.uid)); 

        if (status != MFRC522::STATUS_OK) { 

           Serial.print(F("PCD_Authenticate() failed: ")); 

           Serial.println(mfrc522.GetStatusCodeName(status)); 

           return; 

        } 

        else Serial.println(F("PCD_Authenticate() success: ")); 

         

        // Write block 

        status = mfrc522.MIFARE_Write(block, buffer, 16); 

        if (status != MFRC522::STATUS_OK) { 

          Serial.print(F("MIFARE_Write() failed: ")); 

          Serial.println(mfrc522.GetStatusCodeName(status)); 

            return; 

        } 

        else Serial.println(F("MIFARE_Write() success: ")); 

        Serial.println(j); 

        j++; 



C-19 
 

        Serial.println(j); 

        block = chip[j]; 

        //Serial.println(F("Authenticating using key A...")); 

        status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, block, &key, 

&(mfrc522.uid)); 

        if (status != MFRC522::STATUS_OK) { 

           Serial.print(F("PCD_Authenticate() failed: ")); 

           Serial.println(mfrc522.GetStatusCodeName(status)); 

           return; 

        } 

         

        // Write block 

        status = mfrc522.MIFARE_Write(block, &buffer[16], 16); 

        if (status != MFRC522::STATUS_OK) { 

        Serial.print(F("MIFARE_Write() failed: ")); 

        Serial.println(mfrc522.GetStatusCodeName(status)); 

            return; 

          } 

        else Serial.println(F("MIFARE_Write() success: ")); 

        } 

        Serial.println(" "); 

        mfrc522.PICC_HaltA(); // Halt PICC 

        mfrc522.PCD_StopCrypto1();  // Stop encryption on PCD 

        

} 

 

Raspberry Pi RFID System 

!/usr/bin/env python 

# -*- coding: utf8 -*- 

 

import RPi.GPIO as GPIO 

import MFRC522 

import signal 



C-20 
 

import sys 

import time 

import os 

 

#Create File for Cartridge 

orig_stdout = sys.stdout 

i = 0 

while os.path.exists("Transfered%s.txt" %i): 

 i +=1 

file = open("Transfered%s.txt" %i,"w") 

sys.stdout = file 

 

continue_reading = True 

 

# Capture SIGINT for cleanup when the script is aborted 

def end_read(signal,frame): 

    global continue_reading 

    #print "Ctrl+C captured, ending read." 

    #write to file 

    #file.write("Ctrl+C captured, ending read.") 

    continue_reading = False 

    GPIO.cleanup() 

 

# Hook the SIGINT 

signal.signal(signal.SIGINT, end_read) 

 

# Create an object of the class MFRC522 

MIFAREReader = MFRC522.MFRC522() 

 

# This loop keeps checking for chips. If one is near it will get the UID 

and authenticate 

while continue_reading: 

     

    # Scan for cards     

    (status,TagType) = 

MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL) 

 

    # If a card is found 

    if status == MIFAREReader.MI_OK: 

        #print "Card detected" 

        #Another Write 

        #file.write("Card detected") 

     

    # Get the UID of the card 

    (status,uid) = MIFAREReader.MFRC522_Anticoll() 

 

    # If we have the UID, continue 

    if status == MIFAREReader.MI_OK: 

 

        # Print UID 

        print str(uid[0])+str(uid[1])+str(uid[2])+str(uid[3]) 

        # Write UID 

        #file.write "Card read UID: 

"+str(uid[0])+","+str(uid[1])+","+str(uid[2])+","+str(uid[3])    



C-21 
 

 

        # This is the default key for authentication 

        key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] 

         

        # Select the scanned tag 

        MIFAREReader.MFRC522_SelectTag(uid) 

 

        # Dump the data 

        MIFAREReader.MFRC522_DumpClassic1K(key, uid) 

 

        # Stop 

        MIFAREReader.MFRC522_StopCrypto1() 

         

        time.sleep(2) 

 file.close() 

 sys.exit() 

 

B. Testing 

Results yield a success when a tag isn‟t bricked.  

 

IV. User/Interaction GUI 

The user/interaction GUI runs on the Raspberry Pi and is displayed on the attached touch screen. Below in 

Figure 5 is a flowchart showing the different functions that the program executes and how the functions are 

connected to one another. The RFID part of the user/interaction GUI is discussed in detail in the RFID section of 

this appendix.  

 

Figure 5 User/Interaction GUI Flowchart 

 

A. Code 

The user/interaction GUI program was written in python language using the Tkinter package and the code 

is shown below.  

Note: One additional feature that it yet to be added into the program is a window that displays the name of the 

medication that is being dispensed.  



C-22 
 

from Tkinter import * 

from PIL import ImageTk, Image  

import time 

import smtplib 

import RPi.GPIO as GPIO 

import MFRC522 

import signal 

import os 

import serial 

 

#Status2Reg     = 0x08 

 

#SET UPS FOR GPIO PINS 

GPIO.setmode(GPIO.BOARD) 

GPIO.setup(11,GPIO.IN) 

input = GPIO.input(11)   

 

#Set Up for Time 

localtime = time.localtime() 

hour = localtime.tm_hour 

minute = localtime.tm_min 

TimerVal = None 

TimeValTrig = None 

 

#Here we will be listing all variables needed for the system 

#UID# is the UID 

#T# is the Time Stamp 

#P# will be the pill count is the system 

#D# how many times the pill will be dispensed 

#Feq# is how many to allow a dispense in a time window. 

#LDS: this will allow us to keep track if a cartridge is loading into the 

system or not 

#TimerST this will let us know if we have a time going  

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~Variable 

Declarations~~~~~~~~~~~~~~~~~~~~~~~~~~# 

 

email = None 

TimerST = False 

 

LDS1 = False     

LDS2 = False 

LDS3 = False 

LDS4 = False 

LDS5 = False 

LDS6 = False 

LDS7 = False 

LDS8 = False 

 

UID1 = None 

UID2 = None 

UID3 = None 

UID4 = None 

UID5 = None 

UID6 = None 

UID7 = None 

UID8 = None 



C-23 
 

 

P1 = None 

P2 = None 

P3 = None 

P4 = None 

P5 = None 

P6 = None 

P7 = None 

P8 = None 

 

Feq1 = None 

Feq2 = None 

Feq3 = None 

Feq4 = None 

Feq5 = None 

Feq6 = None 

Feq7 = None 

Feq8 = None 

 

D1 = None 

D2 = None 

D3 = None 

D4 = None 

D5 = None 

D6 = None 

D7 = None 

D8 = None 

 

T1 = None 

T2 = None 

T3 = None 

T4 = None 

T5 = None 

T6 = None 

T7 = None 

T8 = None 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~PROGRAM 

DEFINITIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

def time(): 

    global time1, date1 

    # get the current local time from the PC 

    time2 = time.strftime('%I:%M') 

    pm_txt = "%s" % (time.strftime('%p')) 

    date_txt = "%s, %s %s, %s" % (time.strftime('%A'), 

time.strftime('%B'), time.strftime('%d'), time.strftime('%Y')) 

 

 # if time string has changed, update it 

    if time2 != time1: 

        time1 = time2 

        clock.config(text=time2) 

        pm.config(text=pm_txt) 

        date.config(text=date_txt) 

    # calls itself every 200 milliseconds to update the time display as 

needed 

    clock.after(200, tick) 

     



C-24 
 

def make_loadbutton(): 

    b = Button(frame4, compound=TOP, width=75, height=100, text="LOAD", 

font="helvetica', 12", bg='white', command=load_state) 

    image = ImageTk.PhotoImage(file="settings.jpg") 

    b.config(image=image) 

    b.image = image 

    b.pack(side=LEFT, padx=5) 

 

def make_medbutton(): 

    b = Button(frame4, compound=TOP, width=75, height=100, 

text="Medication", font="helvetica, 12", bg='white', command=med_window) 

    image = ImageTk.PhotoImage(file="medication.jpg") 

    b.config(image=image) 

    b.image = image 

    b.pack(side=RIGHT, padx=5) 

 

def As_Need1(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('01') 

    usbCOM.close() 

    file = open("./count1.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P1 = int(pill_num) 

    P1 = P1 - 1 

    writeto = open("./count1.txt", "w+") 

    writeto.write('%d' % P1) 

 

def As_Need2(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('02') 

    usbCOM.close() 

    file = open("./count2.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P2 = int(pill_num) 

    P2 = P2 - 1 

    writeto = open("./count2.txt", "w+") 

    writeto.write('%d' % P2) 

 

def As_Need3(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('03') 

    usbCOM.close() 

    file = open("./count3.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P3 = int(pill_num) 

    P3 = P3 - 1 

    writeto = open("./count3.txt", "w+") 

    writeto.write('%d' % P3) 



C-25 
 

 

def As_Need4(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('04') 

    usbCOM.close() 

    file = open("./count4.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P4 = int(pill_num) 

    P4 = P4 - 1 

    writeto = open("./count4.txt", "w+") 

    writeto.write('%d' % P4) 

 

def As_Need5(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('05') 

    usbCOM.close() 

    file = open("./count5.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P5 = int(pill_num) 

    P5 = P5 - 1 

    writeto = open("./count5.txt", "w+") 

    writeto.write('%d' % P5) 

 

def As_Need6(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('06') 

    usbCOM.close() 

    file = open("./count6.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P6 = int(pill_num) 

    P6 = P6 - 1 

    writeto = open("./count6.txt", "w+") 

    writeto.write('%d' % P6) 

 

def As_Need7(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('07') 

    usbCOM.close() 

    file = open("./count7.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P7 = int(pill_num) 

    P7 = P7 - 1 

    writeto = open("./count7.txt", "w+") 

    writeto.write('%d' % P7) 

 



C-26 
 

def As_Need8(): 

    usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

    usbCOM.close() 

    usbCOM.open() 

    usbCOM.write('08') 

    usbCOM.close() 

    file = open("./count8.txt", "r") 

    pill_num = file.readline() 

    file.close() 

    P8 = int(pill_num) 

    P8 = P8 - 1 

    writeto = open("./count8.txt", "w+") 

    writeto.write('%d' % P8) 

 

def pill_count1(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count1.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count2(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count2.txt", "r") 



C-27 
 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count3(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count3.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count4(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count4.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 



C-28 
 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count5(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count5.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count6(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count6.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count7(): 



C-29 
 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count7.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

 

def pill_count8(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

    #t.grab_set() 

 

    file = open("./count8.txt", "r") 

    pill_num = file.readline() 

    file.close() 

 

    msg = ("Pill Count: " + str(pill_num)) 

 

    Label(t, text=msg, font="helvetica 22", bg='white').pack(pady=200) 

    b1 = Button(t, text="Back", bg='white', font="helvetica 12", 

command=t.destroy).pack() 

     

def med_window(): 

    t = Toplevel(root) 

    t.configure(bg='white') 

    t.geometry("800x480") 

    t.overrideredirect(True) 

    w = 800 



C-30 
 

    h = 480 

    # get screen width and height 

    ws = root.winfo_screenwidth() 

    hs = root.winfo_screenheight() 

    x = (ws/2) - (w/2) 

    y = (hs/2) - (h/2) 

    # set the dimensions of the screen and where it is placed 

    t.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

 

    heading = Label(t, text="Medication List", font="helvetica 30 bold", 

bg='white') 

    heading.pack(pady=20) 

 

    i = 0 

     

    if os.path.isfile("./Convert1.txt"): 

        file = open("Convert1.txt", "r")        

        file.readline()                    #id tag 

        file.readline()                    #name 

        file.readline()                    #email 

        file.readline()                    #contact name 

        file.readline()                    #contact email 

        read_medname = file.readline()     #med name  

        alter_read_medname = read_medname.replace("\n", '') 

        file.readline()                    #med quantity 

        file.readline()                    #med dose 

        file.readline()                    #med freq                

        file.readline()                    #med notes 

 

        needed_schedule = file.readline()  #as needed/schedule 

         

        frame = Frame(t, bg='white') 

 

        Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

        Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count1, pady=5).grid(row=i, column=1, pady=5) 

        button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

        button.grid(row=i, column=2, pady=5, padx=5) 

        if needed_schedule == "Schedule\n": 

            button.config(state=DISABLED) 

        frame.pack() 

 

        file.close() 

 

        i = i+1 

 

    if os.path.isfile("./Convert2.txt"): 

        file = open("Convert2.txt", "r")       

        file.readline()                    #id tag 

        file.readline()                    #name 

        file.readline()                    #email 

        file.readline()                    #contact name 

        file.readline()                    #contact email 

        read_medname = file.readline()     #med name  



C-31

alter_read_medname = read_medname.replace("\n", '') 

file.readline() #med quantity 

file.readline() #med dose 

file.readline() #med freq

file.readline() #med notes 

needed_schedule = file.readline()  #as needed/schedule 

frame = Frame(t, bg='white') 

Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

 Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count2, pady=5).grid(row=i, column=1, pady=5) 

button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

button.grid(row=i, column=2, pady=5, padx=5) 

if needed_schedule == "Schedule\n": 

button.config(state=DISABLED) 

frame.pack() 

file.close() 

i = i+1 

if os.path.isfile("./Convert3.txt"): 

file = open("Convert3.txt", "r")

file.readline() #id tag 

file.readline() #name 

file.readline() #email 

file.readline() #contact name 

file.readline() #contact email 

read_medname = file.readline() #med name  

alter_read_medname = read_medname.replace("\n", '') 

file.readline() #med quantity 

file.readline() #med dose 

file.readline() #med freq

file.readline() #med notes 

needed_schedule = file.readline()  #as needed/schedule 

frame = Frame(t, bg='white') 

Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count3, pady=5).grid(row=i, column=1, pady=5) 

button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

button.grid(row=i, column=2, pady=5, padx=5) 

if needed_schedule == "Schedule\n": 

button.config(state=DISABLED) 

frame.pack() 

file.close() 



C-32

i = i+1 

if os.path.isfile("./Convert4.txt"): 

file = open("Convert4.txt", "r")

file.readline() #id tag 

file.readline() #name 

file.readline() #email 

file.readline() #contact name 

file.readline() #contact email 

read_medname = file.readline() #med name  

alter_read_medname = read_medname.replace("\n", '') 

file.readline() #med quantity 

file.readline() #med dose 

file.readline() #med freq

file.readline() #med notes 

needed_schedule = file.readline()  #as needed/schedule 

frame = Frame(t, bg='white') 

Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count4, pady=5).grid(row=i, column=1, pady=5) 

button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

button.grid(row=i, column=2, pady=5, padx=5) 

if needed_schedule == "Schedule\n": 

button.config(state=DISABLED) 

frame.pack() 

file.close() 

i = i+1 

if os.path.isfile("./Convert5.txt"): 

file = open("Convert5.txt", "r")

file.readline() #id tag 

file.readline() #name 

file.readline() #email 

file.readline() #contact name 

file.readline() #contact email 

read_medname = file.readline() #med name  

alter_read_medname = read_medname.replace("\n", '') 

file.readline() #med quantity 

file.readline() #med dose 

file.readline() #med freq

file.readline() #med notes 

needed_schedule = file.readline()  #as needed/schedule 

frame = Frame(t, bg='white') 

Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 



C-33 
 

        Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count5, pady=5).grid(row=i, column=1, pady=5) 

        button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

        button.grid(row=i, column=2, pady=5, padx=5) 

        if needed_schedule == "Schedule\n": 

            button.config(state=DISABLED) 

        frame.pack() 

 

        file.close() 

 

        i = i+1 

 

    if os.path.isfile("./Convert6.txt"): 

        file = open("Convert6.txt", "r")        

        file.readline()                    #id tag 

        file.readline()                    #name 

        file.readline()                    #email 

        file.readline()                    #contact name 

        file.readline()                    #contact email 

        read_medname = file.readline()     #med name  

        alter_read_medname = read_medname.replace("\n", '') 

        file.readline()                    #med quantity 

        file.readline()                    #med dose 

        file.readline()                    #med freq                

        file.readline()                    #med notes 

        needed_schedule = file.readline()  #as needed/schedule 

         

        frame = Frame(t, bg='white') 

 

        Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

        Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count6, pady=5).grid(row=i, column=1, pady=5) 

        button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

        button.grid(row=i, column=2, pady=5, padx=5) 

        if needed_schedule == "Schedule\n": 

            button.config(state=DISABLED) 

        frame.pack() 

 

        file.close() 

 

        i = i+1 

 

    if os.path.isfile("./Convert7.txt"): 

        file = open("Convert7.txt", "r")   

        file.readline()                    #id tag 

        file.readline()                    #name 

        file.readline()                    #email 

        file.readline()                    #contact name 

        file.readline()                    #contact email 

        read_medname = file.readline()     #med name  

        alter_read_medname = read_medname.replace("\n", '') 

        file.readline()                    #med quantity 

        file.readline()                    #med dose 



C-34 
 

        file.readline()                    #med freq                

        file.readline()                    #med notes 

        needed_schedule = file.readline()  #as needed/schedule 

         

        frame = Frame(t, bg='white') 

 

        Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

        Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count7, pady=5).grid(row=i, column=1, pady=5) 

        button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

        button.grid(row=i, column=2, pady=5, padx=5) 

        if needed_schedule == "Schedule\n": 

            button.config(state=DISABLED) 

        frame.pack() 

 

        file.close() 

 

        i = i+1 

 

    if os.path.isfile("./Convert8.txt"): 

        file = open("Convert8.txt", "r")       

        file.readline()                    #id tag 

        file.readline()                    #name 

        file.readline()                    #email 

        file.readline()                    #contact name 

        file.readline()                    #contact email 

        read_medname = file.readline()     #med name  

        alter_read_medname = read_medname.replace("\n", '') 

        file.readline()                    #med quantity 

        file.readline()                    #med dose 

        file.readline()                    #med freq                

        file.readline()                    #med notes 

        needed_schedule = file.readline()  #as needed/schedule 

         

        frame = Frame(t, bg='white') 

 

        Label(frame, text=alter_read_medname, font="helvetica 14", 

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W, 

pady=5) 

        Button(frame, text="Pill Count", font="helvetica 12", bg='white', 

command=pill_count8, pady=5).grid(row=i, column=1, pady=5) 

        button = Button(frame,text="DISPENSE", font="helvetica 18", 

bg='white', pady=5) 

        button.grid(row=i, column=2, pady=5, padx=5) 

        if needed_schedule == "Schedule\n": 

            button.config(state=DISABLED) 

        frame.pack() 

 

        file.close() 

 

        i = i+1 

     

    frame2 = Frame(t, bg='white') 



C-35 
 

    b_ok = Button(frame2, text="Back", font="helvetica 12", bg='white', 

command=t.destroy) 

    b_ok.pack() 

 

    frame2.pack(pady=5) 

 

#LOW PILL COUNT NOTIFICATION 

def low_pill(): 

    if (GPIO.input(11)):     

        to = 'nnumair@ieee.org' 

        gmail_user = 'team4dispensum@gmail.com' 

        gmail_pwd = 'LetsDispens' 

        smtpserver = smtplib.SMTP_SSL("smtp.gmail.com",465) 

        smtpserver.ehlo() 

        smtpserver.login(gmail_user, gmail_pwd) 

        header = 'To: ' + to + '\n' + 'From: ' + gmail_user + '\n' + 

'Subject: Dispensum Alert! \n' 

        print header 

        msg = header + 'The pill count in one of the cartdridges is low 

refill needed soon. \n\n' 

        smtpserver.sendmail(gmail_user, to, msg) 

        print 'Help Sent' 

        smtpserver.close() 

 

def help_me(): 

    if (GPIO.input(11)): 

        to = 'nnumair@ieee.org' 

        gmail_user = 'team4dispensum@gmail.com' 

        gmail_pwd = 'LetsDispens' 

        smtpserver = smtplib.SMTP_SSL("smtp.gmail.com",465) 

        smtpserver.ehlo() 

        smtpserver.login(gmail_user, gmail_pwd) 

        header = 'To: ' + to + '\n' + 'From: ' + gmail_user + '\n' + 

'Subject: Dispensum Alert! \n' 

        print header 

        msg = header + 'Your Family Member needs help. \n\n' 

        smtpserver.sendmail(gmail_user, to, msg) 

        print 'Help Sent' 

        smtpserver.close() 

        root.after(100, help_me) 

     

# Capture SIGINT for cleanup when the script is aborted 

def end_read(signal,frame): 

    global continue_reading 

    continue_reading = False 

    GPIO.cleanup() 

 

def MFRC522_StopCrypto1(self): 

    self.ClearBitMask(self.Status2Reg, 0x08) 

 

#LOAD STATE FOR RFID 

def load_state(): 

    global LDS1    

    global LDS2 

    global LDS3 

    global LDS4 

    global LDS5 



C-36

global LDS6 

global LDS7 

global LDS8 

while True: 

if LDS1 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('11') 

time.sleep(5) 

LDS1 = True 

break 

if LDS2 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('12') 

time.sleep(1) 

load_state 

LDS2 = True 

break 

if LDS3 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('13') 

time.sleep(1) 

load_state 

LDS3 = True 

break 

if LDS4 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('14') 

time.sleep(1) 

load_state 

LDS4 = True 

break 

if LDS5 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('15') 

time.sleep(1) 

load_state 

LDS5 = True 

break 

if LDS6 == False: 

usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

usbCOM.close() 

usbCOM.open() 

usbCOM.write('16') 

time.sleep(1) 

load_state 

LDS6 = True 



C-37 
 

            break 

        if LDS7 == False: 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            usbCOM.write('17') 

            time.sleep(1) 

            load_state 

            LDS1 = True 

            break 

        if LDS8 == False: 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            usbCOM.write('18') 

            time.sleep(1) 

            load_state 

            LDS8 = True 

            break  

    time.sleep(1) 

     

    #Create File for Cartridge 

    orig_stdout = sys.stdout 

    i = 1 

    if i == 9: 

        i = 1 

    while os.path.exists("Transferred%s.txt" %i): 

            i +=1 

    file = open("Transferred%s.txt" %i,"w+") 

    sys.stdout = file 

 

    continue_reading = True 

 

    # Hook the SIGINT 

    signal.signal(signal.SIGINT, end_read) 

 

    # Create an object of the class MFRC522 

    MIFAREReader = MFRC522.MFRC522() 

 

    # This loop keeps checking for chips. If one is near it will get the 

UID and authenticate 

    while continue_reading: 

     

        # Scan for cards     

        (status,TagType) = 

MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL) 

 

        # If a card is found 

        if status == MIFAREReader.MI_OK: 

            #print "Card detected" 

            #Another Write 

            #file.write("Card detected") 

         

        # Get the UID of the card 

            (status,uid) = MIFAREReader.MFRC522_Anticoll() 

 

        # If we have the UID, continue 



C-38

if status == MIFAREReader.MI_OK: 

# Print UID 

print str(uid[0])+str(uid[1])+str(uid[2])+str(uid[3]) 

# Write UID 

#file.write "Card read UID: 

"+str(uid[0])+","+str(uid[1])+","+str(uid[2])+","+str(uid[3])   

# This is the default key for authentication 

key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] 

# Select the scanned tag 

MIFAREReader.MFRC522_SelectTag(uid) 

# Dump the data 

MIFAREReader.MFRC522_DumpClassic1K(key, uid) 

# Stop 

MIFAREReader.MFRC522_StopCrypto1() 

time.sleep(2) 

file.close() 

break 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CONVERT 

FILE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

while os.path.isfile("Transferred%s.txt" %i): 

file1 = open("Transferred%s.txt" %i, "r") 

file2 = open("Convert%s.txt" %i, "w+") 

break 

id_tag = file1.readline() 

alter_id_tag = id_tag.replace("\n", '') 

file2.write("%s \n" % alter_id_tag) 

file1.readline() #sector 0 

line = file1.readline() #sector 1 

alter1_line1 = line.replace("[", '') 

alter2_line1 = alter1_line1.replace("]", ',') 

alter3_line1 = alter2_line1.replace("\n", '') 

line = file1.readline()   #sector 2 

alter1_line2 = line.replace("[", ' ') 

alter2_line2 = alter1_line2.replace("]", '') 

alter3_line2 = alter2_line2.replace(", 75, 189", '') 

alter4_line2 = alter3_line2.replace("\n", '') 

combine = eval('[' + alter3_line1 + alter4_line2 + ']') 

Convert = ''.join(chr(i) for i in combine) 

file2.write("%s \n" % Convert) 

stop = "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]" + "\n" 

while line and line != stop: 

line = file1.readline() #sector 3 



C-39 
 

            line = file1.readline()  #sector 4 

            if line == stop: 

                    break 

            alter1_line1 = line.replace("[10,", '') 

            alter2_line1 = alter1_line1.replace("]", ',') 

            alter3_line1 = alter2_line1.replace("\n", '') 

 

            line = file1.readline()  #sector 5 

            alter1_line2 = line.replace("[", ' ') 

            alter2_line2 = alter1_line2.replace("]", '') 

            alter3_line2 = alter2_line2.replace(", 75, 189", '') 

            alter4_line2 = alter3_line2.replace("\n", '') 

             

            combine = eval('[' + alter3_line1 + alter4_line2 + ']') 

            Convert = ''.join(chr(i) for i in combine) 

            file2.write("%s \n" % Convert) 

 

            line = file1.readline()  #sector 6 

            if line == stop: 

                    break 

            alter1_line1 = line.replace("[10,", '') 

            alter2_line1 = alter1_line1.replace("]", ',') 

            alter3_line1 = alter2_line1.replace("\n", '') 

 

            line = file1.readline()  #sector 7 

 

            line = file1.readline()  #sector 8 

            alter1_line2 = line.replace("[", ' ') 

            alter2_line2 = alter1_line2.replace("]", '') 

            alter3_line2 = alter2_line2.replace(", 75, 189", '') 

            alter4_line2 = alter3_line2.replace("\n", '') 

 

            combine = eval('[' + alter3_line1 + alter4_line2 + ']') 

            Convert = ''.join(chr(i) for i in combine) 

            file2.write("%s \n" % Convert) 

 

            line = file1.readline()  #sector 9 

            if line == stop: 

                    break 

            alter1_line1 = line.replace("[10,", '') 

            alter2_line1 = alter1_line1.replace("]", ',') 

            alter3_line1 = alter2_line1.replace("\n", '') 

 

            line = file1.readline()  #sector 10 

            alter1_line2 = line.replace("[", ' ') 

            alter2_line2 = alter1_line2.replace("]", '') 

            alter3_line2 = alter2_line2.replace(", 75, 189", '') 

            alter4_line2 = alter3_line2.replace("\n", '') 

 

            combine = eval('[' + alter3_line1 + alter4_line2 + ']') 

            Convert = ''.join(chr(i) for i in combine) 

            file2.write("%s \n" % Convert) 

 

    file1.close() 

    file2.close() 

     

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 



C-40

root = Tk() 

root.geometry("800x480") # screen size of RPi 

root.overrideredirect(True) 

root.configure(bg='white') 

w = 800 

h = 480 

# get screen width and height 

ws = root.winfo_screenwidth() 

hs = root.winfo_screenheight() 

x = (ws/2) - (w/2) 

y = (hs/2) - (h/2) 

# set the dimensions of the screen and where it is placed 

root.geometry('%dx%d+%d+%d' % (w, h, x, y)) 

frame1 = Frame(root, bg='white') 

temp = Image.open("user_image.jpg") 

temp = temp.save("user_image.ppm", "ppm") 

image = PhotoImage(file = "user_image.ppm") 

imagepanel = Label(frame1, image=image, height=175, bg='white') 

imagepanel.grid(row=0, column=0, sticky=N) 

frame2 = Frame(root, bg='white') 

time1 = '' 

clock = Label(frame2, font=('times', 85, 'bold'), bg='white') 

clock.grid(row=0, column=0, sticky=E, padx=5) 

pm = Label(frame2, font=('times', 35), bg='white') 

pm.grid(row=0, column=1, sticky=W, padx=5) 

frame3 = Frame(root, bg='white') 

date = Label(frame3, font=('times', 25), bg='white', pady=5) 

date.pack() 

time() 

frame4 = Frame(root, bg='white') 

make_loadbutton() 

make_medbutton() 

frame1.pack(pady=5) 

frame2.pack() 

frame3.pack() 

frame4.pack(fill=BOTH, pady=10) 

time.sleep(0.5) 

root.mainloop() 

Figure 6. User/Interaction GUI Program Code 

B. Testing



C-41

The user/interaction GUI program consists of several functions so each was testing separately before 

integrating with other functions.  Since this GUI program uses that text file from the RFID transfer we ran the 

RFID code for transferring a file to the raspberry pi multiple times to check for consistent data transfer. Next the 

convert code was tested multiple times with different RFID transfer text files to verify if it converts format of 

the text file from decimal to ASCII. All the other functions Testing the program was fairly simple because it 

was easy to check if the program was not functioning correctly. Since the code for dispense medication is 

similar to the one in the medication schedule/dispense program no further testing was needed for that function.  

All the other functions of the program were tested by running the GUI program and checking if all the widgets 

(e.g. buttons, labels) appeared correctly on the Raspberry Pi screen with the correct data. 

When testing the main screen of the user/interaction GUI program some of the widgets were either not 

displaying properly or not aligned. The code was modified and then tested several of times before the main 

screen displayed correctly with the project logo, current time, date, and two buttons. The final iteration of main 

screen is shown below in Figure 7.  

Figure 7. User/Interaction GUI Main Window 

When the “Medication” button on the main screen is clicked a new window (Medication List) appears as 

expected (refer to Figure 8). When testing the medication list window some of the medications did not appear 

on the screen when trying to display all eight medications. However, when the font size was reduced all eight 

medications displayed correctly as shown below in Figure 8. For the medication that is taken on a schedule 

when the corresponding dispense button on the medication list window is clicked nothing happens because that 

button is deactivated. Only the medication that is taken as needed has their dispense button enabled (refer to 

Figure 8) which verifies correct functionality. 



C-42 
 

  

Figure 8. Medication List Window 

 

The “Pill Count” button when tested functions as expected as it reads the correct pill count text file generated by 

the medication schedule/dispense program (refer to the following section of this appendix) and displays the pill 

count. Currently the “Dispense” button has not been fully test as the dispense medication code has yet to be 

implemented to the button. However, as mentioned earlier the dispense code has been tested in the medication 

schedule/dispense program so we do not expect to have any issues getting the medication to dispense when the 

“Dispense” button is clicked. The “Load” button on the main window works correctly as when pressed it 

executes the convert code which reads the RFID text file and converts the data from decimal to ASCII format 

and stores it into a new text file as shown below.  

 

V. Medication Schedule/Dispense Program 

● Discuss pill count text file 

While the user GUI shows all the foreground information for the end user the main mind of what makes 

DispenSUM work all works in the background code. This code will open the information from the converted 

transferred file and store the information into the system..After all the formation is stored we wait for a match in the 

times. Once then we enter a dispensing cycle. This is where the user is then notified that is time to take their 

medication with a sound notification. From there the system will send a signal to the motors to rotate to the 

appropriate location. From here we decrement the pill count and update the file that founds the pill count between 

the two systems. If the pill count is less than 5 an email is send out saying there is a low pill count. If the pill count is 

zero then it removes all related info regarding that pill. Once everything is done we loop back to wait state for time 

trigger.   



C-43 
 

    

Figure 9: low pill count email  

    

     Figure 10: Dispensing flow chart 

A. Code 

import time 



C-44 
 

import smtplib 

import RPi.GPIO as GPIO 

import MFRC522 

import signal 

import os 

import serial 

 

 

 

 

GPIO.setmode(GPIO.BOARD) 

GPIO.setup(11,GPIO.IN) 

input = GPIO.input(11) 

 

LDS1 = False     

 

LDS2 = False 

 

LDS3 = False 

 

LDS4 = False 

 

LDS5 = False 

 

LDS6 = False 

 

LDS7 = False 

 

LDS8 = False 

 



C-45

TimerST = False 

UID1 = None 

UID2 = None 

UID3 = None 

UID4 = None 

UID5 = None 

UID6 = None 

UID7 = None 

UID8 = None 

P1 = None 

P2 = None 

P3 = None 

P4 = None 

P5 = None 

P6 = None 

P7 = None 

P8 = None 

Feq1 = None 

Feq2 = None 

Feq3 = None 

Feq4 = None 

Feq5 = None 

Feq6 = None 

Feq7 = None 

Feq8 = None 

D1 = None 

D2 = None 



C-46 
 

D3 = None 

D4 = None 

D5 = None 

D6 = None 

D7 = None 

D8 = None 

 

T1 = None 

T2 = None 

T3 = None 

T4 = None 

T5 = None 

T6 = None 

T7 = None 

T8 = None    

 

def low_pill():    

        to = email 

        gmail_user = 'team4dispensum@gmail.com' 

        gmail_pwd = 'LetsDispens' 

        smtpserver = smtplib.SMTP_SSL("smtp.gmail.com",465) 

        smtpserver.ehlo() 

        smtpserver.login(gmail_user, gmail_pwd) 

        header = 'To: ' + to + '\n' + 'From: ' + gmail_user + '\n' + 'Subject: Dispensum Alert! \n' 

        print header 

        msg = header + 'The pill count in one of the cartdridges is low refill needed soon. \n\n' 

        smtpserver.sendmail(gmail_user, to, msg) 

        print 'Help Sent' 

        smtpserver.close() 

        time.sleep(0.05) 



C-47

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Cartridge Population~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

while True: 

    #hour = localtime.tm_hour 

    #minute = localtime.tm_min 

    #Populate Cartridge one and Email 

    if LDS1 == False: 

        if os.path.isfile("./Convert1.txt"): 

   print "pop 1" 

   pop1 = open("Convert1.txt") 

   LDS1 = True 

   UID1 = pop1.readline()     #loads ID into File 

   pop1.readline()  #Skip line Name Line 

   pop1.readline()  #Skip line Email line 

   pop1.readline()  #Skip line Help name line 

   email = pop1.readline()    #Loads email 

   pop1.readline()            #Skip line Med name line 

   P1 = pop1.readline()       #How many pills we have 

   Feq1 = pop1.readline()     #How many Times a day 

   D1 = pop1.readline()  #How many signles to dispense per time stamp 

   pop1.readline()      #Skip notes line 

   pop1.readline()      #Skip Type line 

   T1 = pop1.readline()   #Load first time stamp 

    #Populate Cartridge two and no email 

    if os.path.isfile("./Convert2.txt"): 

        if LDS2 == False: 

   #print "pop 2" 

   pop2 = open("Convert2.txt") 



C-48 
 

            LDS2 = True 

            UID2 = pop2.readline()     #loads ID into File 

            pop2.readline()            #Skip line Name Line 

            pop2.readline()            #Skip line Email line 

            pop2.readline()            #Skip line Help name line 

            pop2.readline()            #Skip Loads email 

            pop2.readline()            #Skip line Med name line 

            P2 = pop2.readline()       #How many pills we have 

            Feq2 = pop2.readline()     #How many Times a day 

            D2 = pop2.readline()       #How many signles to dispense per time stamp 

            pop2.readline()            #Skip notes line 

            pop2.readline()            #Skip Type line 

            T2 = pop2.readline()       #Load first time stamp 

             

 

        #Populate Cartridge Three and no email  

    if os.path.isfile("./Convert3.txt"): 

        if LDS2 == False: 

            #print "pop 3" 

            pop3 = open("Convert3.txt") 

            LDS3 = True 

            UID3 = pop3.readline()     #loads ID into File 

            pop3.readline()            #Skip line Name Line 

            pop3.readline()            #Skip line Email line 

            pop3.readline()            #Skip line Help name line 

            pop3.readline()            #Skip Loads email 

            pop3.readline()            #Skip line Med name line 

            P3 = pop3.readline()       #How many pills we have 

            Feq3 = pop3.readline()     #How many Times a day 

            D3 = pop3.readline()       #How many signles to dispense per time stamp 



C-49 
 

            pop3.readline()            #Skip notes line 

            pop3.readline()            #Skip Type line 

            T3 = pop3.readline()       #Load first time stamp 

             

             

        #Populate Cartridge two and no email  

    if os.path.isfile("./Convert4.txt"): 

        if LDS3 == False: 

            #print "pop 4" 

            pop4 = open("Convert4.txt") 

            LDS4 = True 

            UID4 = pop4.readline()     #loads ID into File 

            pop4.readline()            #Skip line Name Line 

            pop4.readline()            #Skip line Email line 

            pop4.readline()            #Skip line Help name line 

            pop4.readline()            #Skip Loads email 

            pop4.readline()            #Skip line Med name line 

            P4 = pop4.readline()       #How many pills we have 

            Feq4 = pop4.readline()     #How many Times a day 

            D4 = pop4.readline()       #How many signles to dispense per time stamp 

            pop4.readline()            #Skip notes line 

            pop4.readline()            #Skip Type line 

            T4 = pop4.readline()       #Load first time stamp 

             

 

        #Populate Cartridge Five and no email  

    if os.path.isfile("./Convert5.txt"): 

        if LDS5 == False: 

            #print "pop 5" 

            pop5 = open("Convert5.txt") 



C-50 
 

            LDS5 = True 

            UID5 = pop5.readline()     #loads ID into File 

            pop5.readline()            #Skip line Name Line 

            pop5.readline()            #Skip line Email line 

            pop5.readline()            #Skip line Help name line 

            pop5.readline()            #Skip Loads email 

            pop5.readline()            #Skip line Med name line 

            P5 = pop5.readline()       #How many pills we have 

            Feq5 = pop5.readline()     #How many Times a day 

            D5 = pop5.readline()       #How many signles to dispense per time stamp 

            pop5.readline()            #Skip notes line 

            pop5.readline()            #Skip Type line 

            T5 = pop5.readline()       #Load first time stamp 

             

 

        #Populate Cartridge Six and no email  

    if os.path.isfile("./Convert6.txt"): 

        if LDS6 == False: 

            #print "pop 6" 

            pop6 = open("Convert6.txt") 

            LDS6 = True 

            UID6 = pop6.readline()     #loads ID into File 

            pop6.readline()            #Skip line Name Line 

            pop6.readline()            #Skip line Email line 

            pop6.readline()            #Skip line Help name line 

            pop6.readline()            #Skip Loads email 

            pop6.readline()            #Skip line Med name line 

            P6 = pop6.readline()       #How many pills we have 

            Feq6 = pop6.readline()     #How many Times a day 

            D6 = pop6.readline()       #How many signles to dispense per time stamp 



C-51

   pop6.readline()      #Skip notes line 

   pop6.readline()      #Skip Type line 

   T6 = pop6.readline()  #Load first time stamp 

        #Populate Cartridge Seven and no email 

    if os.path.isfile("./Convert7.txt"): 

        if LDS7 == False: 

   #print "pop 7" 

   pop7 = open("Convert6.txt") 

   LDS7 = True 

   UID7 = pop7.readline()     #loads ID into File 

   pop7.readline()  #Skip line Name Line 

   pop7.readline()  #Skip line Email line 

   pop7.readline()  #Skip line Help name line 

 pop7.readline()  #Skip Loads email 

   pop7.readline()  #Skip line Med name line 

   P7 = pop7.readline()  #How many pills we have 

   Feq7 = pop7.readline()     #How many Times a day 

   D7 = pop7.readline()  #How many signles to dispense per time stamp 

   pop7.readline()      #Skip notes line 

   pop7.readline()      #Skip Type line 

   T7 = pop7.readline()   #Load first time stamp 

        #Populate Cartridge Eight and no email 

    if os.path.isfile("./Convert8.txt"): 

        if LDS8 == False: 

   #print "pop 8" 

   pop8 = open("Convert8.txt") 



C-52 
 

            LDS8 = True 

            UID8 = pop8.readline()     #loads ID into File 

            pop8.readline()            #Skip line Name Line 

            pop8.readline()            #Skip line Email line 

            pop8.readline()            #Skip line Help name line 

            pop8.readline()            #Skip Loads email 

            pop8.readline()            #Skip line Med name line 

            P8 = pop8.readline()       #How many pills we have 

            Feq8 = pop8.readline()     #How many Times a day 

            D8 = pop8.readline()       #How many signles to dispense per time stamp 

            pop8.readline()            #Skip notes line 

            pop8.readline()            #Skip Type line 

            T8 = pop8.readline()       #Load first time stamp 

             

 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~DISPENSING SCHUDULE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 

    localtime = time.localtime() 

    hour = localtime.tm_hour 

    minute = localtime.tm_min 

    #Type Cast to int 

    if LDS1 == True: 

        D1 = int(D1) 

        P1 = int(P1) 

        T1 = int(T1) 

        writeto = open("./count1.txt", "w+") 

        writeto.write('%d' % P1) 

        writeto.close    

    if LDS2 == True: 

        D2 = int(D2) 



C-53 
 

        P2 = int(P2) 

        T2 = int(T2) 

        writeto = open("./count2.txt", "w+") 

        writeto.write('%d' % P2) 

        writeto.close  

    if LDS3 == True: 

        D3 = int(D3) 

        P3 = int(P3) 

        T3 = int(T3) 

        writeto = open("./count3.txt", "w+") 

        writeto.write('%d' % P3) 

        writeto.close  

    if LDS4 == True: 

        D4 = int(D4) 

        P4 = int(P4) 

        T4 = int(T4) 

        writeto = open("./count4.txt", "w+") 

        writeto.write('%d' % P4) 

        writeto.close  

    if LDS5 == True: 

        D5 = int(D5) 

        P5 = int(P5) 

        T5 = int(T5) 

        writeto = open("./count5.txt", "w+") 

        writeto.write('%d' % P5) 

        writeto.close  

    if LDS6 == True: 

        D6 = int(D6) 

        P6 = int(P6) 

        T6 = int(T6) 



C-54 
 

        writeto = open("./count6.txt", "w+") 

        writeto.write('%d' % P6) 

        writeto.close  

    if LDS7 == True: 

        D7 = int(D7) 

        P7 = int(P7) 

        T7 = int(T7) 

        writeto = open("./count7.txt", "w+") 

        writeto.write('%d' % P7) 

        writeto.close  

    if LDS8 == True: 

        D8 = int(D8) 

        P8 = int(P8) 

        T8 = int(T8) 

        writeto = open("./count8.txt", "w+") 

        writeto.write('%d' % P8) 

        writeto.close  

    TimerST = False 

    #For Cartridge 1   

    if LDS1 == True: 

        if hour == T1 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            for k in range (0,D1): 

                time.sleep(5) 

                usbCOM.write('01') 

                usbCOM.close() 

                usbCOM.open() 



C-55 
 

            usbCOM.close() 

            P1 = P1 - D1 

            writeto = open("./count1.txt", "w+") 

            writeto.write('%d' % P1) 

            writeto.close 

            if P1 < 5: 

                low_pill() 

                time.sleep(0.05) 

            if P1 <= 0: 

                UID1 = None 

                P1 = None 

                Feq1 = None 

                D1 = None 

                T1 = None 

                os.remove("./Convert1.txt") 

                os.remove("./Transferred1.txt") 

                LDS1 = False 

                break 

            time.sleep(10) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = minute 

 

    #For Cartridge 2 

    if LDS2 == True:         

        if hour == hour and minute == minute: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 



C-56 
 

            for k in range (0,D2): 

                time.sleep(5) 

                usbCOM.write('02') 

                usbCOM.close() 

                usbCOM.open() 

            usbCOM.close() 

            P2 = P2 - D2 

            writeto = open("./count2.txt", "w+") 

            writeto.write('%d' % P2) 

            writeto.close 

            if P2 < 5: 

                low_pill 

            if P2 <= 0: 

                UID2 = None 

                P2 = None 

                Feq2 = None 

                D2 = None 

                T2 = None 

                #LDS2 = False 

                os.remove("./Convert2.txt") 

                os.remove("./Transferred2.txt") 

            time.sleep(60) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = minute 

 

    #For Cartridge 3 

    if LDS3 == True: 

        if hour == T3 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 



C-57

   usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

   usbCOM.close() 

   usbCOM.open() 

 for k in range (0,D3): 

 time.sleep(5) 

 usbCOM.write('03') 

 usbCOM.close() 

 usbCOM.open() 

   usbCOM.close() 

   P3 = P3 - D3 

   writeto = open("./count3.txt", "w+") 

   writeto.write('%d' % P3) 

   writeto.close 

   if P3 < 5: 

       low_pill 

   if P3 <= 0: 

 UID3 = None 

 P3 = None 

 Feq3 = None 

 D3 = None 

 T3 = None 

 #LDS3 = False 

 os.remove("./Convert3.txt") 

 os.remove("./Transferred3.txt") 

   time.sleep(60) 

   if TimerST == False: 

 TimerST = True 

 TimerVal = time.localtime() 

    #For Cartridge 4 



C-58 
 

    if LDS4 == True: 

        if hour == T4 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            for k in range (0,D2): 

                usbCOM.write('04') 

                usbCOM.close() 

                usbCOM.open() 

            usbCOM.close() 

            P4 = P4 - D4 

            writeto = open("./count4.txt", "w+") 

            writeto.write('%d' % P4) 

            writeto.close 

            if P4 < 5: 

                low_pill 

            if P4 <= 0: 

                UID4 = None 

                P4 = None 

                Feq4 = None 

                D4 = None 

                T4 = None 

                #LDS4 = False 

                os.remove("./Convert4.txt") 

                os.remove("./Transferred4.txt") 

            #time.sleep(60) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = time.localtime() 



C-59

    #For Cartridge 5 

    if LDS5 == True: 

        if hour == T5 and minute == 00: 

   os.system('mpg321 Dispensum.mp3 &') 

   usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

   usbCOM.close() 

   usbCOM.open() 

   for D5 in range (1,D5): 

 time.sleep(5) 

 usbCOM.write('05') 

 usbCOM.close() 

 usbCOM.open() 

   usbCOM.close() 

   P5 = P5 - D5 

   writeto = open("./count5.txt", "w+") 

   writeto.write('%d' % P5) 

   writeto.close 

   if P5 < 5: 

       low_pill 

   if P5 <= 0: 

 UID5 = None 

 P5 = None 

 Feq5 = None 

 D5 = None 

 T5 = None 

 #LDS5 = False 

 os.remove("./Convert5.txt") 

 os.remove("./Transferred5.txt") 

   time.sleep(60) 



C-60 
 

            if TimerST == False: 

                TimerST = True 

                TimerVal = time.localtime() 

 

    #For Cartridge 6 

    if LDS6 == True: 

        if hour == T6 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            for D6 in range (1,D6): 

                usbCOM.write('06') 

                usbCOM.close() 

                usbCOM.open() 

            usbCOM.close() 

            P6 = P6 - D6 

            writeto = open("./count6.txt", "w+") 

            writeto.write('%d' % P6) 

            writeto.close 

            if P6 < 5: 

                low_pill 

            if P6 <= 0: 

                UID6 = None 

                P6 = None 

                Feq6 = None 

                D6 = None 

                T6 = None 

                #LDS6 = False 

                os.remove("./Convert6.txt") 



C-61 
 

                os.remove("./Transferred6.txt") 

            time.sleep(60) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = time.localtime() 

 

    #For Cartridge 7 

    if LDS7 == True: 

        if hour == T7 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            for D7 in range (1,D7): 

                usbCOM.write('07') 

                usbCOM.close() 

                usbCOM.open() 

            usbCOM.close() 

            P7 = P7 - D7 

            writeto = open("./count7.txt", "w+") 

            writeto.write('%d' % P7) 

            writeto.close 

            if P7 < 5: 

                low_pill 

            if P7 <= 0: 

                UID7 = None 

                P7 = None 

                Feq7 = None 

                D7 = None 

                T7 = None 



C-62 
 

                #LDS7 = False 

                os.remove("./Convert7.txt") 

                os.remove("./Transferred7.txt") 

            time.sleep(60) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = time.localtime() 

 

    #For Cartridge 8 

    if LDS8 == True: 

        if hour == T8 and minute == 00: 

            os.system('mpg321 Dispensum.mp3 &') 

            usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

            usbCOM.close() 

            usbCOM.open() 

            for D8 in range (1,D8): 

                usbCOM.write('08') 

                usbCOM.close() 

                usbCOM.open() 

            usbCOM.close() 

            P8 = P8 - D8 

            writeto = open("./count8.txt", "w+") 

            writeto.write('%d' % P8) 

            writeto.close 

            if P8 < 5: 

                low_pill 

            if P8 <= 0: 

                UID8 = None 

                P8 = None 

                Feq8 = None 



C-63 
 

                D8 = None 

                T8 = None 

                #LDS8 = False 

                os.remove("./Convert8.txt") 

                os.remove("./Transferred8.txt") 

            time.sleep(60) 

            if TimerST == False: 

                TimerST = True 

                TimerVal = time.localtime() 

 

    #FOR REHOMING INTO POSITION 

    if TimerST == True: 

        while True: 

            localtime = time.localtime() 

            hour = localtime.tm_hour 

            minute = localtime.tm_min 

            TimerValTrig = localtime.tm_min 

            print TimerVal 

            print TimerValTrig 

            if TimerVal+15 <= TimerValTrig: 

                TimerST = False 

                usbCOM = serial.Serial('/dev/ttyACM0', 9600) 

                usbCOM.close() 

                usbCOM.open() 

                usbCOM.write('09') 

                time.sleep(1) 

                usbCOM.close() 

                usbCOM.open() 

                usbCOM.write('19') 

                usbCOM.close() 



C-64 
 

                break 

 

    #Email function 

 

    if (GPIO.input(11)): 

        to = email 

        gmail_user = 'team4dispensum@gmail.com' 

        gmail_pwd = 'LetsDispens' 

        smtpserver = smtplib.SMTP_SSL("smtp.gmail.com",465) 

        smtpserver.ehlo() 

        smtpserver.login(gmail_user, gmail_pwd) 

        header = 'To: ' + to + '\n' + 'From: ' + gmail_user + '\n' + 'Subject: Dispensum Alert! \n' 

        print header 

        msg = header + 'Your Family Member needs help. \n\n' 

        smtpserver.sendmail(gmail_user, to, msg) 

        print 'Help Sent' 

        smtpserver.close() 

        time.sleep(0.05) 



C-65 
 

VI. Arduino Control Code

 

 

 

 



C-66



C-67 
 



C-68 
 



C-69



D-1 

 

Appendix D. Mechanical

I. Device Drawing 

The device drawing consists of an isometric view of our overall CAD file. It gives a small glimpse into the 

mechanical aspects of the project, a short list of a bill of materials and labeling for each individual portion. 

 

 

 

 

 

 

 

 

 

 

 

 



D-2

II. Cartridge Drawing

The cartridge drawing gives a couple views of the cornerstone of the device, the cartridge. It identifies some of the 

key components of the cartridge based design.  



D-2 

 

 

III. Rotary Carousel Drawing 

 This drawing demonstrates a key part of our design, the rotary carousel. It shows some of the key components of 

that subassembly. 

 



F-1 
 

Appendix F. Resumes 

 

 



Benjamin Deubel Green 

CAREER OBJECTIVE 
To operate as an integral part of a team, working with and learning about the latest technology to improve the 
future for all people. 

EDUCATION 
California State University, Sacramento (Expected Graduation: Spring 2017) 
Bachelor of Science: Electrical and Electronics Engineering 
Concentration and Academic Interests: Controls, Robotics, and Medical Technology 
Cumulative GPA: 3.756  Major GPA: 3.821 

CSUS DEAN’S HONOR LIST: Fall 2013, Fall 2014, Fall 2015, Spring 2016, and Fall 2017 

Associates Degree in Commercial Music Recording with Highest Honors, American River College, 2012 
Associates Degree in Commercial Music Business with Highest Honors, American River College, 2012 

RELEVANT COURSEWORK 
EEE 178 – Intro to Machine Vision 
EEE 187 – Robotics  
EEE 108 and 109 – Electronics I & II 

EEE 184 – Intro to Feedback Systems 
EEE 188 – Digital Control Systems 
EEE 193A and 193B – Product Design Project 

TECHNICAL SKILLS 
Proficient with Excel – Organizing, tabulating, and making complex visual representations of data  
Experience with Lab Testing Equipment – Oscilloscope, function generator, and digital testing equipment 
ORCAD PSpice 
Multisim 
MATLAB & Simulink 
C Programming 
Solidworks 

AFFILIATIONS 
Recruitment Officer  Institute of Electrical and Electronics Engineers, Sacramento Chapter 2016 – Present 
Member  Power Engineers Society 2015 – Present 
Member  Tau Beta Pi Engineering Honor Society 2017   

WORK EXPERIENCE 
Café Bernardo and the Berkley Bar  Sacramento, California (2015 - 2016) 
Position: Bartender and Lead Server 

Stirling Bridges  Sacramento, California (2014 - 2015) 
Position: Lead Server and Server Trainer 

The Old Spaghetti Factory  Rancho Cordova, California (2004 - 2014) 
Position: Server Trainer and Bartender Trainer 

VOLUNTEER WORK 
Juvenile Diabetes Research Foundation  Sacramento, California 
Event: Walk to Cure Diabetes (2011-2013) 

• Coordinated and directed the main stage audio operation

F-2



F-3



F-4 
 

 



F-5 
 

 

 


	FinalPrototypeDocumentation
	PrototypeDocumentation
	AppendixA
	Appendix B
	AppendixC.Software
	AppendixD.Mechanical
	Appendix F

	Benjamin Deubel Green Resume No Link
	FinalPrototypeDocumentation



